Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering, College of Life Sciences, Guiyang 550025, Guizhou Province, China.
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China.
Int J Biol Macromol. 2024 Oct;277(Pt 3):134189. doi: 10.1016/j.ijbiomac.2024.134189. Epub 2024 Jul 26.
Floral bud induction is of great importance for fruit crops, which may substantially affect fruit yield. Previously, a FLOWERING BHLH (FBH) transcription factor gene HpbHLH70 was identified in pitaya (Hylocereus polyrhizus) as subjected to drought stress. In present work, HpbHLH70 was found predominantly activated in pitaya anthers. GUS fusing reporter assay showed its selective activation in anthers and vasculatures of transgenic Arabidopsis. Moreover, HpbHLH70 is drought inducible, which was further supported by the deepened GUS staining under drought condition, indicating a HpbHLH70-mediated crosstalk between drought response and floral bud induction, which partially explained the advanced floral bud induction in pitaya by drought stress. Overexpression of HpbHLH70 in pitaya improved the drought tolerance by enhancing the water-holding capacity and the ROS-scavenging activity. Meanwhile, overexpression of HpbHLH70 in Arabidopsis improved their behaviors under drought stress. Intriguingly, the transgenic Arabidopsis flowered earlier than the wild-type. In addition, HpbHLH70 was verified to heterodimerize with HpbHLH59 and transactivate the floral-bud-induction regulator HpSOC1 via direct binding to the promoter. Overexpression of HpbHLH70 up-regulated the expression of HpSOC1 in pitaya. Collectively, our data uncover that drought-induced HpbHLH70 enhances drought tolerance and may accelerate floral bud induction in pitaya via heterodimerization with HpbHLH59 and transactivation of HpSOC1.
花芽诱导对果实作物非常重要,它可能会极大地影响果实产量。先前,在火龙果(Hylocereus polyrhizus)中鉴定到一个 FLOWERING BHLH(FBH)转录因子基因 HpbHLH70,该基因受到干旱胁迫的影响。在本研究中,发现 HpbHLH70 主要在火龙果花药中被激活。GUS 融合报告基因分析表明,它在拟南芥花药和维管束中具有选择性激活。此外,HpbHLH70 受干旱诱导,在干旱条件下 GUS 染色加深进一步支持了这一点,这表明 HpbHLH70 介导了干旱响应和花芽诱导之间的串扰,这部分解释了火龙果在干旱胁迫下花芽诱导的提前。在火龙果中过表达 HpbHLH70 通过增强保水能力和 ROS 清除活性来提高耐旱性。同时,在拟南芥中过表达 HpbHLH70 改善了它们在干旱胁迫下的行为。有趣的是,转基因拟南芥比野生型更早开花。此外,已验证 HpbHLH70 与 HpbHLH59 异二聚化,并通过直接结合启动子来转录激活花芽诱导调节剂 HpSOC1。在火龙果中过表达 HpbHLH70 上调了 HpSOC1 的表达。总的来说,我们的数据揭示了干旱诱导的 HpbHLH70 通过与 HpbHLH59 异二聚化和 HpSOC1 的转录激活来增强耐旱性,并可能加速火龙果的花芽诱导。