Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria.
Bioresour Technol. 2024 Sep;408:131164. doi: 10.1016/j.biortech.2024.131164. Epub 2024 Jul 26.
Transitioning away from fossil feedstocks is imperative to mitigate climate change, and necessitates the utilization of renewable, alternative carbon and energy sources to foster a circular carbon economy. In this context, lignocellulosic biomass and one-carbon compounds emerge as promising feedstocks that could be renewably upgraded by thermophilic anaerobes (thermoanaerobes) via gas fermentation or consolidated bioprocessing to value-added products. In this review, the potential of thermoanaerobes for cost-efficient, effective and sustainable bioproduction is discussed. Metabolic and bioprocess engineering approaches are reviewed to draw a comprehensive picture of current developments and future perspectives for the conversion of renewable feedstocks to chemicals and fuels of interest. Selected bioprocessing scenarios are outlined, offering practical insights into the applicability of thermoanaerobes at a large scale. Collectively, the potential advantages of thermoanaerobes regarding process economics could facilitate an easier transition towards sustainable bioprocesses with renewable feedstocks.
摆脱化石原料是缓解气候变化的当务之急,这需要利用可再生的替代碳和能源来促进循环碳经济。在这种情况下,木质纤维素生物质和一碳化合物作为有前途的原料出现,它们可以通过嗜热厌氧菌(热厌氧菌)通过气体发酵或整合生物加工来可再生升级为增值产品。在这篇综述中,讨论了热厌氧菌在成本效益、有效和可持续生物生产方面的潜力。综述了代谢和生物加工工程方法,以全面了解将可再生原料转化为有价值的化学品和燃料的当前发展和未来展望。概述了选定的生物加工方案,为大规模应用热厌氧菌提供了实际的见解。总的来说,热厌氧菌在工艺经济性方面的潜在优势可能有助于更容易地向使用可再生原料的可持续生物工艺过渡。