Suppr超能文献

构建用于将木质纤维素生物转化为乙醇和化学品的木质素分解菌群

Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.

作者信息

Bilal Muhammad, Nawaz Muhammad Zohaib, Iqbal Hafiz M N, Hou Jialin, Mahboob Shahid, Al-Ghanim Khalid A, Cheng Hairong

机构信息

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Wuxi Metagene Science & Technology Co. Ltd, Wuxi, China.

出版信息

Protein Pept Lett. 2018;25(2):108-119. doi: 10.2174/0929866525666180122105835.

Abstract

BACKGROUND

Rising environmental concerns and recent global scenario of cleaner production and consumption are leading to the design of green industrial processes to produce alternative fuels and chemicals. Although bioethanol is one of the most promising and eco-friendly alternatives to fossil fuels yet its production from food and feed has received much negative criticism.

OBJECTIVE

The main objective of this study was to present the noteworthy potentialities of lignocellulosic biomass as an enormous and renewable biological resource. The particular focus was also given on engineering ligninolytic consortium for bioconversion of lignocelluloses to ethanol and chemicals on sustainable and environmentally basis.

METHODS

Herein, an effort has been made to extensively review, analyze and compile salient information related to the topic of interest. Several authentic bibliographic databases including PubMed, Scopus, Elsevier, Springer, Bentham Science and other scientific databases were searched with utmost care, and inclusion/ exclusion criterion was adopted to appraise the quality of retrieved peer-reviewed research literature.

RESULTS

Bioethanol production from lignocellulosic biomass can largely satisfy the possible inconsistency of first-generation ethanol since it utilizes inedible lignocellulosic feedstocks, primarily sourced from agriculture and forestry wastes. Two major polysaccharides in lignocellulosic biomass namely, cellulose and hemicellulose constitute a complex lignocellulosic network by connecting with lignin, which is highly recalcitrant to depolymerization. Several attempts have been made to reduce the cost involved in the process through improving the pretreatment process. While, the ligninolytic enzymes of white rot fungi (WRF) including laccase, lignin peroxidase (LiP), and manganese peroxidase (MnP) have appeared as versatile biocatalysts for delignification of several lignocellulosic residues. The first part of the review is mainly focused on engineering ligninolytic consortium. In the second part, WRF and its unique ligninolytic enzyme-based bio-delignification of lignocellulosic biomass, enzymatic hydrolysis, and fermentation of hydrolyzed feedstock are discussed. The metabolic engineering, enzymatic engineering, synthetic biology aspects for ethanol production and platform chemicals production are comprehensively reviewed in the third part. Towards the end information is also given on futuristic viewpoints.

CONCLUSION

In conclusion, given the present unpredicted scenario of energy and fuel crisis accompanied by global warming, lignocellulosic bioethanol holds great promise as an alternative to petroleum. Apart from bioethanol, the simultaneous production of other value-added products may improve the economics of lignocellulosic bioethanol bioconversion process.

摘要

背景

日益增长的环境问题以及近期清洁生产和消费的全球形势,正促使人们设计绿色工业流程来生产替代燃料和化学品。尽管生物乙醇是最具前景且生态友好的化石燃料替代品之一,但其从粮食和饲料中生产却受到了诸多负面批评。

目的

本研究的主要目的是展现木质纤维素生物质作为一种丰富且可再生生物资源的显著潜力。同时特别关注构建木质素降解菌群,以在可持续和环境友好的基础上实现木质纤维素向乙醇和化学品的生物转化。

方法

在此,我们致力于广泛回顾、分析和汇编与感兴趣主题相关的重要信息。极为仔细地检索了包括PubMed、Scopus、爱思唯尔、施普林格、本特姆科学出版社等在内数种权威文献数据库以及其他科学数据库,并采用纳入/排除标准来评估所检索到的同行评议研究文献的质量。

结果

利用木质纤维素生物质生产生物乙醇在很大程度上可解决第一代乙醇可能存在的问题,因为它利用的是不可食用的木质纤维素原料,主要来源于农业和林业废弃物。木质纤维素生物质中的两种主要多糖,即纤维素和半纤维素,通过与木质素相连构成了一个复杂的木质纤维素网络,而木质素极难解聚。人们已多次尝试通过改进预处理工艺来降低该过程的成本。同时,白腐真菌(WRF)的木质素降解酶,包括漆酶、木质素过氧化物酶(LiP)和锰过氧化物酶(MnP),已成为多种木质纤维素残渣脱木质素的通用生物催化剂。综述的第一部分主要聚焦于构建木质素降解菌群。第二部分讨论了白腐真菌及其独特的基于木质素降解酶的木质纤维素生物质生物脱木质素、酶水解以及水解原料的发酵。第三部分全面综述了乙醇生产和平台化学品生产的代谢工程、酶工程及合成生物学方面。最后还给出了未来展望的信息。

结论

总之,鉴于当前能源和燃料危机以及全球变暖这一不可预测的形势,木质纤维素生物乙醇作为石油替代品具有巨大潜力。除了生物乙醇,同时生产其他增值产品可能会提高木质纤维素生物乙醇生物转化过程的经济性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验