Verily Life Sciences LLC, San Francisco, California.
Verily Life Sciences LLC, San Francisco, California.
Mod Pathol. 2024 Nov;37(11):100573. doi: 10.1016/j.modpat.2024.100573. Epub 2024 Jul 26.
The tissue diagnosis of adenocarcinoma and intraductal carcinoma of the prostate includes Gleason grading of tumor morphology on the hematoxylin and eosin stain and immunohistochemistry markers on the prostatic intraepithelial neoplasia-4 stain (CK5/6, P63, and AMACR). In this work, we create an automated system for producing both virtual hematoxylin and eosin and prostatic intraepithelial neoplasia-4 immunohistochemistry stains from unstained prostate tissue using a high-throughput hyperspectral fluorescence microscope and artificial intelligence and machine learning. We demonstrate that the virtual stainer models can produce high-quality images suitable for diagnosis by genitourinary pathologists. Specifically, we validate our system through extensive human review and computational analysis, using a previously validated Gleason scoring model, and an expert panel, on a large data set of test slides. This study extends our previous work on virtual staining from autofluorescence, demonstrates the clinical utility of this technology for prostate cancer, and exemplifies a rigorous standard of qualitative and quantitative evaluation for digital pathology.
前列腺腺癌和导管内癌的组织学诊断包括在苏木精和伊红染色上对肿瘤形态进行 Gleason 分级,以及在前列腺上皮内瘤变-4 染色(CK5/6、P63 和 AMACR)上进行免疫组织化学标记。在这项工作中,我们使用高通量高光谱荧光显微镜和人工智能与机器学习,为未染色的前列腺组织创建了一个既能生成虚拟苏木精和伊红染色,又能生成前列腺上皮内瘤变-4 免疫组化染色的自动化系统。我们证明,虚拟染色模型可以生成适合泌尿生殖道病理学家诊断的高质量图像。具体来说,我们通过广泛的人工审查和计算分析,使用以前经过验证的 Gleason 评分模型和专家小组,对大量测试幻灯片进行了验证。本研究扩展了我们之前关于从自发荧光进行虚拟染色的工作,证明了该技术在前列腺癌中的临床应用,并为数字病理学提供了严格的定性和定量评估标准。