Suppr超能文献

理解对具有右删失协变量的回归模型进行完全病例分析的意义。

Understanding the implications of a complete case analysis for regression models with a right-censored covariate.

作者信息

Ashner Marissa C, Garcia Tanya P

机构信息

Department of Biostatistics and Bioinformatics, Duke University.

Department of Biostatistics, University of North Carolina at Chapel Hill.

出版信息

Am Stat. 2024;78(3):335-344. doi: 10.1080/00031305.2023.2282629. Epub 2023 Dec 21.

Abstract

Despite its drawbacks, the complete case analysis is commonly used in regression models with incomplete covariates. Understanding when the complete case analysis will lead to consistent parameter estimation is vital before use. Our aim here is to demonstrate when a complete case analysis is consistent for randomly right-censored covariates and to discuss the implications of its use even when consistent. Across the censored covariate literature, different assumptions are made to ensure a complete case analysis produces a consistent estimator, which leads to confusion in practice. We make several contributions to dispel this confusion. First, we summarize the language surrounding the assumptions that lead to a consistent complete case estimator. Then, we show a unidirectional hierarchical relationship between these assumptions, which leads us to one sufficient assumption to consider before using a complete case analysis. Lastly, we conduct a simulation study to illustrate the performance of a complete case analysis with a right-censored covariate under different censoring mechanism assumptions, and we demonstrate its use with a Huntington disease data example.

摘要

尽管存在缺陷,但完全病例分析在协变量不完整的回归模型中仍被广泛使用。在使用之前,了解完全病例分析何时会导致一致的参数估计至关重要。我们在此的目的是证明完全病例分析在随机右删失协变量情况下何时是一致的,并讨论即使在一致的情况下使用它的影响。在整个删失协变量文献中,为确保完全病例分析产生一致的估计量做出了不同的假设,这在实践中导致了混淆。我们做出了几项贡献来消除这种混淆。首先,我们总结了围绕导致一致的完全病例估计量的假设的相关表述。然后,我们展示了这些假设之间的单向层次关系,这使我们在使用完全病例分析之前考虑一个充分的假设。最后,我们进行了一项模拟研究,以说明在不同删失机制假设下右删失协变量的完全病例分析的性能,并通过亨廷顿病数据示例展示其应用。

相似文献

3
Cox regression model with randomly censored covariates.具有随机删失协变量的Cox回归模型。
Biom J. 2019 Jul;61(4):1020-1032. doi: 10.1002/bimj.201800275. Epub 2019 Mar 25.
7
Threshold regression to accommodate a censored covariate.用于处理删失协变量的阈值回归。
Biometrics. 2018 Dec;74(4):1261-1270. doi: 10.1111/biom.12922. Epub 2018 Jun 22.

本文引用的文献

4
Cox regression model with randomly censored covariates.具有随机删失协变量的Cox回归模型。
Biom J. 2019 Jul;61(4):1020-1032. doi: 10.1002/bimj.201800275. Epub 2019 Mar 25.
5
Conditional modeling of longitudinal data with terminal event.带有终末事件的纵向数据的条件建模
J Am Stat Assoc. 2018;113(521):357-368. doi: 10.1080/01621459.2016.1255637. Epub 2017 Nov 13.
9
Threshold regression to accommodate a censored covariate.用于处理删失协变量的阈值回归。
Biometrics. 2018 Dec;74(4):1261-1270. doi: 10.1111/biom.12922. Epub 2018 Jun 22.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验