Suppr超能文献

具有随机删失协变量的Cox回归模型。

Cox regression model with randomly censored covariates.

作者信息

Atem Folefac D, Matsouaka Roland A, Zimmern Vincent E

机构信息

Department of Biostatistics and Data Science, University of Texas Health Science Center at Houston, Houston, TX, USA.

Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.

出版信息

Biom J. 2019 Jul;61(4):1020-1032. doi: 10.1002/bimj.201800275. Epub 2019 Mar 25.

Abstract

This paper deals with a Cox proportional hazards regression model, where some covariates of interest are randomly right-censored. While methods for censored outcomes have become ubiquitous in the literature, methods for censored covariates have thus far received little attention and, for the most part, dealt with the issue of limit-of-detection. For randomly censored covariates, an often-used method is the inefficient complete-case analysis (CCA) which consists in deleting censored observations in the data analysis. When censoring is not completely independent, the CCA leads to biased and spurious results. Methods for missing covariate data, including type I and type II covariate censoring as well as limit-of-detection do not readily apply due to the fundamentally different nature of randomly censored covariates. We develop a novel method for censored covariates using a conditional mean imputation based on either Kaplan-Meier estimates or a Cox proportional hazards model to estimate the effects of these covariates on a time-to-event outcome. We evaluate the performance of the proposed method through simulation studies and show that it provides good bias reduction and statistical efficiency. Finally, we illustrate the method using data from the Framingham Heart Study to assess the relationship between offspring and parental age of onset of cardiovascular events.

摘要

本文探讨了一种Cox比例风险回归模型,其中一些感兴趣的协变量存在随机右删失情况。虽然删失结局的方法在文献中已很常见,但删失协变量的方法迄今为止很少受到关注,并且在很大程度上是处理检测限问题。对于随机删失的协变量,一种常用的方法是效率低下的完整病例分析(CCA),即在数据分析中删除删失的观测值。当删失并非完全独立时,CCA会导致有偏差和虚假的结果。由于随机删失协变量的本质截然不同,包括I型和II型协变量删失以及检测限在内的缺失协变量数据方法并不容易适用。我们基于Kaplan-Meier估计或Cox比例风险模型开发了一种使用条件均值插补的删失协变量新方法,以估计这些协变量对事件发生时间结局的影响。我们通过模拟研究评估了所提出方法的性能,并表明它能有效减少偏差并提高统计效率。最后,我们使用弗雷明汉心脏研究的数据来说明该方法,以评估后代与父母心血管事件发病年龄之间的关系。

相似文献

1
Cox regression model with randomly censored covariates.具有随机删失协变量的Cox回归模型。
Biom J. 2019 Jul;61(4):1020-1032. doi: 10.1002/bimj.201800275. Epub 2019 Mar 25.
2
Threshold regression to accommodate a censored covariate.用于处理删失协变量的阈值回归。
Biometrics. 2018 Dec;74(4):1261-1270. doi: 10.1111/biom.12922. Epub 2018 Jun 22.
3

引用本文的文献

3
Making Sense of Censored Covariates: Statistical Methods for Studies of Huntington's Disease.理解删失协变量:亨廷顿舞蹈症研究的统计方法
Annu Rev Stat Appl. 2024 Apr;11:255-277. doi: 10.1146/annurev-statistics-040522-095944. Epub 2023 Sep 8.
8
Differential Expression of Autophagy-Related Long Non-Coding RNA in Melanoma.黑色素瘤中自噬相关长链非编码RNA的差异表达
Bull Exp Biol Med. 2023 Feb;174(4):482-488. doi: 10.1007/s10517-023-05734-0. Epub 2023 Mar 11.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验