McPherson Andrew, Vázquez-García Ignacio, Myers Matthew A, Zatzman Matthew, Al-Rawi Duaa, Weiner Adam, Freeman Samuel, Mohibullah Neeman, Satas Gryte, Williams Marc J, Ceglia Nicholas, Zhang Allen W, Li Jun, Lim Jamie L P, Wu Michelle, Choi Seongmin, Havasov Eliyahu, Grewal Diljot, Shi Hongyu, Kim Minsoo, Schwarz Roland, Kaufmann Tom, Dinh Khanh Ngoc, Uhlitz Florian, Tran Julie, Wu Yushi, Patel Ruchi, Ramakrishnan Satish, Kim DooA, Clarke Justin, Green Hunter, Ali Emily, DiBona Melody, Varice Nancy, Kundra Ritika, Broach Vance, Gardner Ginger J, Roche Kara Long, Sonoda Yukio, Zivanovic Oliver, Kim Sarah H, Grisham Rachel N, Liu Ying L, Viale Agnes, Rusk Nicole, Lakhman Yulia, Ellenson Lora H, Tavaré Simon, Aparicio Samuel, Chi Dennis S, Aghajanian Carol, Abu-Rustum Nadeem R, Friedman Claire F, Zamarin Dmitriy, Weigelt Britta, Bakhoum Samuel F, Shah Sohrab P
bioRxiv. 2024 Jul 15:2024.07.11.602772. doi: 10.1101/2024.07.11.602772.
Whole-genome doubling (WGD) is a critical driver of tumor development and is linked to drug resistance and metastasis in solid malignancies. Here, we demonstrate that WGD is an ongoing mutational process in tumor evolution. Using single-cell whole-genome sequencing, we measured and modeled how WGD events are distributed across cellular populations within tumors and associated WGD dynamics with properties of genome diversification and phenotypic consequences of innate immunity. We studied WGD evolution in 65 high-grade serous ovarian cancer (HGSOC) tissue samples from 40 patients, yielding 29,481 tumor cell genomes. We found near-ubiquitous evidence of WGD as an ongoing mutational process promoting cell-cell diversity, high rates of chromosomal missegregation, and consequent micronucleation. Using a novel mutation-based WGD timing method, doubleTime , we delineated specific modes by which WGD can drive tumor evolution: (i) unitary evolutionary origin followed by significant diversification, (ii) independent WGD events on a pre-existing background of copy number diversity, and (iii) evolutionarily late clonal expansions of WGD populations. Additionally, through integrated single-cell RNA sequencing and high-resolution immunofluorescence microscopy, we found that inflammatory signaling and cGAS-STING pathway activation result from ongoing chromosomal instability and are restricted to tumors that remain predominantly diploid. This contrasted with predominantly WGD tumors, which exhibited significant quiescent and immunosuppressive phenotypic states. Together, these findings establish WGD as an evolutionarily 'active' mutational process that promotes evolvability and dysregulated immunity in late stage ovarian cancer.
全基因组加倍(WGD)是肿瘤发生发展的关键驱动因素,与实体恶性肿瘤的耐药性和转移相关。在此,我们证明WGD是肿瘤进化过程中持续存在的突变过程。通过单细胞全基因组测序,我们测量并建立模型,以研究WGD事件如何在肿瘤内的细胞群体中分布,以及将WGD动态与基因组多样化特性和先天免疫的表型后果相关联。我们研究了来自40名患者的65个高级别浆液性卵巢癌(HGSOC)组织样本中的WGD进化情况,共获得29481个肿瘤细胞基因组。我们发现几乎普遍存在WGD作为促进细胞间多样性、高频率染色体错分离以及随之而来的微核形成的持续突变过程的证据。使用一种基于突变的新型WGD计时方法doubleTime,我们描绘了WGD驱动肿瘤进化的特定模式:(i)单一进化起源随后显著多样化;(ii)在预先存在的拷贝数多样性背景上的独立WGD事件;以及(iii)WGD群体在进化后期的克隆扩增。此外,通过整合单细胞RNA测序和高分辨率免疫荧光显微镜,我们发现炎症信号传导和cGAS-STING途径激活源于持续的染色体不稳定,并且仅限于主要保持二倍体的肿瘤。这与主要为WGD的肿瘤形成对比,后者表现出显著的静止和免疫抑制表型状态。总之,这些发现确立了WGD作为一种在进化上“活跃”的突变过程,它促进晚期卵巢癌的进化能力和免疫失调。