Dinh Khanh N, Vázquez-García Ignacio, Chan Andrew, Malhotra Rhea, Weiner Adam, McPherson Andrew W, Tavaré Simon
Irving Institute for Cancer Dynamics, Columbia University, New York, New York, United States of America.
Department of Statistics, Columbia University, New York, New York, United States of America.
PLoS Comput Biol. 2025 Apr 3;21(4):e1012902. doi: 10.1371/journal.pcbi.1012902. eCollection 2025 Apr.
Cancer development is characterized by chromosomal instability, manifesting in frequent occurrences of different genomic alteration mechanisms ranging in extent and impact. Mathematical modeling can help evaluate the role of each mutational process during tumor progression, however existing frameworks can only capture certain aspects of chromosomal instability (CIN). We present CINner, a mathematical framework for modeling genomic diversity and selection during tumor evolution. The main advantage of CINner is its flexibility to incorporate many genomic events that directly impact cellular fitness, from driver gene mutations to copy number alterations (CNAs), including focal amplifications and deletions, missegregations and whole-genome duplication (WGD). We apply CINner to find chromosome-arm selection parameters that drive tumorigenesis in the absence of WGD in chromosomally stable cancer types from the Pan-Cancer Analysis of Whole Genomes (PCAWG, [Formula: see text]). We found that the selection parameters predict WGD prevalence among different chromosomally unstable tumors, hinting that the selective advantage of WGD cells hinges on their tolerance for aneuploidy and escape from nullisomy. Analysis of inference results using CINner across cancer types in The Cancer Genome Atlas ([Formula: see text]) further reveals that the inferred selection parameters reflect the bias between tumor suppressor genes and oncogenes on specific genomic regions. Direct application of CINner to model the WGD proportion and fraction of genome altered (FGA) in PCAWG uncovers the increase in CNA probabilities associated with WGD in each cancer type. CINner can also be utilized to study chromosomally stable cancer types, by applying a selection model based on driver gene mutations and focal amplifications or deletions (chronic lymphocytic leukemia in PCAWG, [Formula: see text]). Finally, we used CINner to analyze the impact of CNA probabilities, chromosome selection parameters, tumor growth dynamics and population size on cancer fitness and heterogeneity. We expect that CINner will provide a powerful modeling tool for the oncology community to quantify the impact of newly uncovered genomic alteration mechanisms on shaping tumor progression and adaptation.
癌症发展的特征是染色体不稳定,表现为频繁出现程度和影响各异的不同基因组改变机制。数学建模有助于评估每个突变过程在肿瘤进展中的作用,然而现有的框架只能捕捉染色体不稳定(CIN)的某些方面。我们提出了CINner,这是一个用于在肿瘤进化过程中对基因组多样性和选择进行建模的数学框架。CINner的主要优点是它具有灵活性,能够纳入许多直接影响细胞适应性的基因组事件,从驱动基因突变到拷贝数改变(CNA),包括局部扩增和缺失、错配分离和全基因组复制(WGD)。我们应用CINner来寻找染色体臂选择参数,这些参数在来自全基因组泛癌分析(PCAWG,[公式:见原文])的染色体稳定癌症类型中,在没有WGD的情况下驱动肿瘤发生。我们发现这些选择参数预测了不同染色体不稳定肿瘤中WGD的流行率,这表明WGD细胞的选择优势取决于它们对非整倍体的耐受性以及从单体缺失中逃脱的能力。使用CINner对癌症基因组图谱([公式:见原文])中不同癌症类型的推断结果进行分析,进一步揭示了推断出的选择参数反映了特定基因组区域上肿瘤抑制基因和癌基因之间的偏差。将CINner直接应用于对PCAWG中WGD比例和基因组改变分数(FGA)进行建模,揭示了每种癌症类型中与WGD相关的CNA概率的增加。CINner还可用于研究染色体稳定的癌症类型,方法是应用基于驱动基因突变和局部扩增或缺失的选择模型(PCAWG中的慢性淋巴细胞白血病,[公式:见原文])。最后,我们使用CINner来分析CNA概率、染色体选择参数、肿瘤生长动力学和群体大小对癌症适应性和异质性的影响。我们期望CINner将为肿瘤学界提供一个强大的建模工具,以量化新发现的基因组改变机制对塑造肿瘤进展和适应性的影响。