Koesters Andrew G, Rich Mark M, Engisch Kathrin L
Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45345.
bioRxiv. 2025 Mar 21:2023.06.14.544980. doi: 10.1101/2023.06.14.544980.
Following prolonged activity blockade, amplitudes of miniature excitatory postsynaptic currents (mEPSCs) increase, a form of plasticity termed "homeostatic synaptic plasticity." We previously showed that a presynaptic protein, the small GTPase Rab3A, is required for full expression of the increase in miniature endplate current amplitudes following prolonged blockade of action potential activity at the mouse neuromuscular junction in vivo, where an increase in postsynaptic receptors does not contribute (Wang et al., 2005; Wang et al., 2011). It is unknown whether this form of Rab3A-dependent homeostatic plasticity at the neuromuscular junction shares any characteristics with central synapses. We show here that homeostatic synaptic plasticity of mEPSCs is impaired in mouse cortical neuron cultures prepared from Rab3A and mutant mice expressing a single point mutation of Rab3A, Rab3A Earlybird mice. To determine if Rab3A is involved in the well-established homeostatic increase in postsynaptic AMPA-type receptors (AMPARs), we performed a series of experiments in which electrophysiological recordings of mEPSCs and confocal imaging of synaptic AMPAR immunofluorescence were assessed within the same cultures. We found that the increase in postsynaptic AMPAR levels in wild type cultures was more variable than that of mEPSC amplitudes, which might be explained by a presynaptic contribution, but we cannot rule out variability in the measurement. Finally, we demonstrate that Rab3A is acting in neurons because only selective loss of Rab3A in neurons, not glia, disrupted the homeostatic increase in mEPSC amplitudes. This is the first demonstration that a protein thought to function presynaptically is required for homeostatic synaptic plasticity of quantal size in central neurons.
在长时间的活动阻断后,微小兴奋性突触后电流(mEPSCs)的幅度增加,这是一种被称为“稳态突触可塑性”的可塑性形式。我们之前表明,在体内小鼠神经肌肉接头处动作电位活动被长时间阻断后,微小终板电流幅度增加的完全表达需要一种突触前蛋白——小GTP酶Rab3A,而突触后受体的增加对此并无贡献(Wang等人,2005年;Wang等人,2011年)。尚不清楚神经肌肉接头处这种形式的依赖Rab3A的稳态可塑性是否与中枢突触具有任何共同特征。我们在此表明,从Rab3A基因敲除小鼠和表达Rab3A单点突变的突变小鼠(Rab3A早鸟小鼠)制备的小鼠皮质神经元培养物中,mEPSCs的稳态突触可塑性受损。为了确定Rab3A是否参与了突触后AMPA型受体(AMPARs)中已确立的稳态增加,我们进行了一系列实验,在同一培养物中评估mEPSCs的电生理记录和突触AMPAR免疫荧光的共聚焦成像。我们发现,野生型培养物中突触后AMPAR水平的增加比mEPSC幅度的增加更具可变性,这可能是由突触前的作用所解释的,但我们不能排除测量中的可变性。最后,我们证明Rab3A在神经元中起作用,因为只有神经元中Rab3A的选择性缺失,而不是神经胶质细胞中Rab3A的缺失,才会破坏mEPSC幅度的稳态增加。这是首次证明一种被认为在突触前起作用的蛋白质是中枢神经元中量子大小的稳态突触可塑性所必需的。