体内平衡机制调节皮质电路动力学的不同方面。

Homeostatic mechanisms regulate distinct aspects of cortical circuit dynamics.

机构信息

Computation in Neural Circuits Group, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany.

Department of Biology, Brandeis University, Waltham, MA 02454.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24514-24525. doi: 10.1073/pnas.1918368117. Epub 2020 Sep 11.

Abstract

Homeostasis is indispensable to counteract the destabilizing effects of Hebbian plasticity. Although it is commonly assumed that homeostasis modulates synaptic strength, membrane excitability, and firing rates, its role at the neural circuit and network level is unknown. Here, we identify changes in higher-order network properties of freely behaving rodents during prolonged visual deprivation. Strikingly, our data reveal that functional pairwise correlations and their structure are subject to homeostatic regulation. Using a computational model, we demonstrate that the interplay of different plasticity and homeostatic mechanisms can capture the initial drop and delayed recovery of firing rates and correlations observed experimentally. Moreover, our model indicates that synaptic scaling is crucial for the recovery of correlations and network structure, while intrinsic plasticity is essential for the rebound of firing rates, suggesting that synaptic scaling and intrinsic plasticity can serve distinct functions in homeostatically regulating network dynamics.

摘要

体内平衡对于抵消赫布可塑性的不稳定性效应是必不可少的。尽管普遍认为体内平衡调节突触强度、膜兴奋性和放电率,但它在神经回路和网络水平上的作用尚不清楚。在这里,我们在自由活动的啮齿动物中确定了长时间视觉剥夺期间高阶网络特性的变化。引人注目的是,我们的数据表明,功能对相关性及其结构受到体内平衡调节的影响。使用计算模型,我们证明了不同可塑性和体内平衡机制的相互作用可以捕捉到实验中观察到的放电率和相关性的初始下降和延迟恢复。此外,我们的模型表明,突触缩放对于相关性和网络结构的恢复至关重要,而内在可塑性对于放电率的反弹至关重要,这表明突触缩放和内在可塑性可以在体内平衡调节网络动态方面发挥不同的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f49/7533694/dee5d40a6b5d/pnas.1918368117fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索