Suppr超能文献

GPS-Net:基于网络正则化核学习发现预后通路模块

GPS-Net: discovering prognostic pathway modules based on network regularized kernel learning.

作者信息

Yao Sijie, Li Kaiqiao, Li Tingyi, Yu Xiaoqing, Kuan Pei Fen, Wang Xuefeng

机构信息

Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institution, Tampa, Florida, 33612, USA.

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, 11794, USA.

出版信息

bioRxiv. 2024 Jul 18:2024.07.15.603645. doi: 10.1101/2024.07.15.603645.

Abstract

The search for prognostic biomarkers capable of predicting patient outcomes, by analyzing gene expression in tissue samples and other molecular profiles, remains largely on single-gene-based or global-gene-search approaches. Gene-centric approaches, while foundational, fail to capture the higher-order dependencies that reflect the activities of co-regulated processes, pathway alterations, and regulatory networks, all of which are crucial in determining the patient outcomes in complex diseases like cancer. Here, we introduce GPS-Net, a computational framework that fills the gap in efficiently identifying prognostic modules by incorporating the holistic pathway structures and the network of gene interactions. By innovatively incorporating advanced multiple kernel learning techniques and network-based regularization, the proposed method not only enhances the accuracy of biomarker and pathway identification but also significantly reduces computational complexity, as demonstrated by extensive simulation studies. Applying GPS-Net, we identified key pathways that are predictive of patient outcomes in a cancer immunotherapy study. Overall, our approach provides a novel framework that renders genome-wide pathway-level prognostic analysis both feasible and scalable, synergizing both mechanism-driven and data-driven for precision genomics.

摘要

通过分析组织样本中的基因表达和其他分子特征来寻找能够预测患者预后的生物标志物,目前主要仍基于单基因或全基因搜索方法。以基因为中心的方法虽然是基础,但无法捕捉到反映共同调控过程、通路改变和调控网络活动的高阶依赖性,而这些对于确定像癌症这样的复杂疾病中的患者预后至关重要。在此,我们介绍GPS-Net,这是一个计算框架,通过纳入整体通路结构和基因相互作用网络来填补高效识别预后模块方面的空白。通过创新性地纳入先进的多核学习技术和基于网络的正则化,所提出的方法不仅提高了生物标志物和通路识别的准确性,还显著降低了计算复杂性,大量模拟研究证明了这一点。应用GPS-Net,我们在一项癌症免疫治疗研究中确定了可预测患者预后的关键通路。总体而言,我们的方法提供了一个新颖的框架,使全基因组通路水平的预后分析既可行又可扩展,将机制驱动和数据驱动相结合以实现精准基因组学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b116/11275840/4165dd24d728/nihpp-2024.07.15.603645v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验