Suppr超能文献

冗余可保护大脑加速老化的健康个体的处理速度。

Redundancy protects processing speed in healthy individuals with accelerated brain aging.

作者信息

Stanford William, Mucha Peter J, Dayan Eran

出版信息

bioRxiv. 2024 Jul 16:2024.07.12.603314. doi: 10.1101/2024.07.12.603314.

Abstract

Recent advancements in computational learning techniques have enabled the estimation of brain age (BA) from neuroimaging data. The difference between chronological age (CA) and BA, known as the BA gap, can potentially serve as a biomarker of brain health. Studies, however, have documented low correlations between BA gap and cognition in healthy aging. This suggests that protective mechanisms in the brain may help counter the effect of accelerated brain aging. Here, we investigated whether redundancy in brain networks may protect cognitive function in individuals with accelerated brain aging. First, we employed deep learning to estimate individual brain ages from structural magnetic resonance imaging (MRI). Next, we associated CA, BA, and BA gap, with cognitive measures and network topology derived from diffusion MRI and tractography. We found that CA and BA were both similarly related to cognitive measures and network topology, while BA gap did not show strong relationships in either domain. Despite observing no strong relationships between brain-age gap (BA gap) and demographic variables, cognitive measures, or topological features in healthy aging, individuals with accelerated aging (BA gap+) exhibited lower average degree and redundancy within the dorsal attention network compared to those with delayed aging (BA gap-). Furthermore, redundancy in the dorsal attention network was positively associated with processing speed in BA gap+ individuals. These results indicate a potential neuroprotective role of redundancy in structural brain networks for mitigating the impact of accelerated brain atrophy on cognitive performance in healthy aging.

摘要

计算学习技术的最新进展使得能够从神经影像数据中估计脑龄(BA)。实际年龄(CA)与脑龄之间的差异,即所谓的脑龄差距,有可能作为脑健康的生物标志物。然而,研究表明,在健康衰老过程中,脑龄差距与认知之间的相关性较低。这表明大脑中的保护机制可能有助于抵消脑加速衰老的影响。在这里,我们研究了脑网络中的冗余是否可以保护脑加速衰老个体的认知功能。首先,我们采用深度学习从结构磁共振成像(MRI)中估计个体脑龄。接下来,我们将实际年龄、脑龄和脑龄差距与从扩散MRI和纤维束成像得出的认知测量和网络拓扑结构相关联。我们发现,实际年龄和脑龄与认知测量和网络拓扑结构的关系相似,而脑龄差距在这两个领域均未显示出强相关性。尽管在健康衰老过程中未观察到脑龄差距与人口统计学变量、认知测量或拓扑特征之间存在强相关性,但与脑龄延迟个体(脑龄差距-)相比,脑加速衰老个体(脑龄差距+)的背侧注意网络内的平均度和冗余度较低。此外,背侧注意网络中的冗余度与脑龄差距+个体的处理速度呈正相关。这些结果表明,结构脑网络中的冗余在减轻脑加速萎缩对健康衰老认知表现的影响方面具有潜在的神经保护作用。

相似文献

3
Accelerated brain aging in chronic low back pain.慢性下背痛加速大脑老化。
Brain Res. 2021 Mar 15;1755:147263. doi: 10.1016/j.brainres.2020.147263. Epub 2021 Jan 7.
5
Age-Net: An MRI-Based Iterative Framework for Brain Biological Age Estimation.Age-Net:一种基于 MRI 的大脑生物年龄估计迭代框架。
IEEE Trans Med Imaging. 2021 Jul;40(7):1778-1791. doi: 10.1109/TMI.2021.3066857. Epub 2021 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验