IEEE Trans Med Imaging. 2021 Jul;40(7):1778-1791. doi: 10.1109/TMI.2021.3066857. Epub 2021 Jun 30.
The concept of biological age (BA) - although important in clinical practice - is hard to grasp mainly due to the lack of a clearly defined reference standard. For specific applications, especially in pediatrics, medical image data are used for BA estimation in a routine clinical context. Beyond this young age group, BA estimation is mostly restricted to whole-body assessment using non-imaging indicators such as blood biomarkers, genetic and cellular data. However, various organ systems may exhibit different aging characteristics due to lifestyle and genetic factors. Thus, a whole-body assessment of the BA does not reflect the deviations of aging behavior between organs. To this end, we propose a new imaging-based framework for organ-specific BA estimation. In this initial study we focus mainly on brain MRI. As a first step, we introduce a chronological age (CA) estimation framework using deep convolutional neural networks (Age-Net). We quantitatively assess the performance of this framework in comparison to existing state-of-the-art CA estimation approaches. Furthermore, we expand upon Age-Net with a novel iterative data-cleaning algorithm to segregate atypical-aging patients (BA [Formula: see text] CA) from the given population. We hypothesize that the remaining population should approximate the true BA behavior. We apply the proposed methodology on a brain magnetic resonance image (MRI) dataset containing healthy individuals as well as Alzheimer's patients with different dementia ratings. We demonstrate the correlation between the predicted BAs and the expected cognitive deterioration in Alzheimer's patients. A statistical and visualization-based analysis has provided evidence regarding the potential and current challenges of the proposed methodology.
生物年龄 (BA) 的概念 - 尽管在临床实践中很重要 - 但由于缺乏明确界定的参考标准,很难理解。对于特定的应用,特别是在儿科领域,医疗图像数据被用于常规临床环境中的 BA 估计。超出这个年轻年龄段,BA 的估计主要局限于使用非成像指标(如血液生物标志物、遗传和细胞数据)进行全身评估。然而,由于生活方式和遗传因素的影响,各种器官系统可能表现出不同的衰老特征。因此,对 BA 的全身评估并不能反映器官之间衰老行为的偏差。为此,我们提出了一种新的基于成像的器官特异性 BA 估计框架。在这项初步研究中,我们主要关注脑 MRI。作为第一步,我们使用深度卷积神经网络 (Age-Net) 引入了一个基于 CA 的估计框架。我们定量评估了该框架与现有最先进的 CA 估计方法相比的性能。此外,我们通过一种新的迭代数据清理算法扩展了 Age-Net,以将异常衰老的患者(BA [公式:见文本] CA)与给定人群分开。我们假设剩余的人群应该接近真实的 BA 行为。我们将提出的方法应用于包含健康个体以及不同痴呆评分的阿尔茨海默病患者的脑磁共振图像 (MRI) 数据集。我们证明了预测的 BAs 与阿尔茨海默病患者预期认知恶化之间的相关性。基于统计和可视化的分析提供了关于所提出方法的潜力和当前挑战的证据。