Mahadeva Rajesh, Kumar Mahendra, Diwan Anjali, Manik Gaurav, Dixit Saurav, Das Gobind, Gupta Vinay, Sharma Anuj
Department of Physics, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
Department of Instrumentation and Control Engineering, Dr. B R Ambedkar National Institute of Technology, Jalandhar, Punjab, 144011, India.
Heliyon. 2024 Jul 5;10(13):e34132. doi: 10.1016/j.heliyon.2024.e34132. eCollection 2024 Jul 15.
Effective planning, management, and control of industrial plants and processes have exploded in popularity to enhance global sustainability in recent decades. In this arena, computational predictive models have significantly contributed to plant performance optimization. In this regard, this research proposes an Improvised Grey Wolf Optimizer (IGWO) aided Artificial Neural Network (ANN) predictive model (IGWO-ANN Model-1 to 4) to predict the performance (permeate flux) of desalination plants accurately. For this, the proposed models investigated experimental inputs four: salt concentration & feed flow rate, condenser & evaporator inlet temperatures of the plant. Besides, mean squared error (MSE) and the regression coefficients (R) have been used to assess the models' accuracy. The proposed IGWO-ANN Model-4 shows strong optimization abilities and provides better R = 99.3 % with minimum errors (0.004) compared to existing Response Surface Methodology (RSM) (R = 98.5 %, error = 0.100), ANN (R = 98.8 %, error = 0.060), GWO-ANN (R = 98.8 % error = 0.008), models. The proposed models are multitasking, multilayers, and multivariable, capable of accurately analyzing the desalination plant's performance, and suitable for other industrial applications. This study yielded a promising outcome and revealed the significant pathways for the researchers to analyze the desalination plant's performance to save time, money, and energy.
近几十年来,为提高全球可持续性,对工业工厂和流程进行有效的规划、管理和控制已变得极为流行。在这个领域,计算预测模型对工厂性能优化做出了重大贡献。在这方面,本研究提出一种改进的灰狼优化器(IGWO)辅助的人工神经网络(ANN)预测模型(IGWO - ANN模型1至4),以准确预测海水淡化厂的性能(渗透通量)。为此,所提出的模型研究了四个实验输入:盐浓度、进料流速、工厂冷凝器和蒸发器的入口温度。此外,均方误差(MSE)和回归系数(R)已被用于评估模型的准确性。与现有的响应面方法(RSM)(R = 98.5%,误差 = 0.100)、人工神经网络(ANN)(R = 98.8%,误差 = 0.060)、灰狼优化器 - 人工神经网络(GWO - ANN)(R = 98.8%,误差 = 0.008)模型相比,所提出的IGWO - ANN模型4显示出强大的优化能力,具有更好的R = 99.3%和最小误差(0.004)。所提出的模型具有多任务、多层和多变量的特点,能够准确分析海水淡化厂的性能,适用于其他工业应用。本研究取得了有前景的成果,并为研究人员分析海水淡化厂的性能以节省时间、金钱和能源揭示了重要途径。