Kongu Engineering College, Perundurai, Erode, 638060, Tamilnadu, India.
Sanskrithi School of Engineering, Puttaparthi, Ananthapur, 515134, Andhra Pradesh, India.
Environ Sci Pollut Res Int. 2022 Sep;29(44):66068-66084. doi: 10.1007/s11356-022-20396-7. Epub 2022 Apr 30.
The major emission sources of NO are from automobiles, trucks, and various non-road vehicles, power plants, coal fired boilers, cement kilns, turbines, etc. Plasma reactor technology is widely used in gas conversion applications, such as NOx conversion into useful chemical by-product. Among the plasma treatment techniques, nonthermal plasma (NTP) is widely used because it does not cause any damage to the surfaces of the reacting chamber. In this proposed work, the feasibility of Dielectric Barrier Discharge (DBD) reactor-based nonthermal plasma (NTP) process is examined based on four operating parameters including NOx concentration (300-400 ppm), gas flow rate (2-6 lpm), applied plasma voltage (20-30 kVpp), and electrode gap (3-5 mm) for removing NOx gas from diesel engine exhaust. Optimization of NTP process parameters has been carried out using response surface-based Box-Behnken design (BBD) method and artificial neural network (ANN) method and compared with the performance measures such as R, MSE (mean square error), RMSE (root mean square error), and MAPE (mean absolute percentage error). Two kinds of analysis were carried out based on (1) NOx removal efficiency and (2) energy efficiency. Based on the simulation studies carried out for Nox removal efficiency, the RSM methodology produces the performance measures, 0.98 for R, 1.274 for MSE, 1.128 for RMSE, and 2.053 for MAPE, and for ANN analysis method, 0.99 for R, 2.167 for MSE, 1.472 for RMSE, and 1.276 for MAPE. These results shows that ANN method is having enhanced performance measures. For the second case, based on the energy efficiency study, the R, MSE, RMSE, and MAPE values from the RSM model are 0.97, 2.230, 1.493, and 2.903 respectively. Similarly based on ANN model, the R, MSE, RMSE, and MAPE values are 0.99, 0.246, 0.46, and 0.615, respectively. From the performance measures, it is found that the ANN model is accurate than the RSM model in predicting the NOx removal/reduction and efficiency. These models demonstrate that they have strong agreement with the experimental results. The experimental results are indicated that optimum conditions arrived based on the RSM model resulted in a maximum NOx reduction of 60.5% and an energy efficiency of 66.24 g/J. The comparison between the two models confirmed the findings, whereas this ANN model displayed a stronger correlation to the experimental evidence.
主要的氮氧化物排放源来自汽车、卡车和各种非道路车辆、发电厂、燃煤锅炉、水泥厂、涡轮机等。等离子体反应器技术广泛应用于气体转化应用,例如将氮氧化物转化为有用的化学副产品。在等离子体处理技术中,非热等离子体(NTP)由于不会对反应室表面造成任何损坏而被广泛应用。在这项拟议的工作中,基于四种操作参数(包括氮氧化物浓度(300-400ppm)、气体流量(2-6lpm)、施加的等离子体电压(20-30kVpp)和电极间隙(3-5mm),检查了基于介质阻挡放电(DBD)反应器的非热等离子体(NTP)过程去除柴油机废气中氮氧化物的可行性。使用基于响应面的 Box-Behnken 设计(BBD)方法和人工神经网络(ANN)方法对 NTP 工艺参数进行了优化,并与性能指标(如 R、MSE(均方误差)、RMSE(均方根误差)和 MAPE(平均绝对百分比误差))进行了比较。基于(1)氮氧化物去除效率和(2)能量效率进行了两种分析。基于进行的氮氧化物去除效率模拟研究,RSM 方法产生的性能指标为 R=0.98、MSE=1.274、RMSE=1.128 和 MAPE=2.053,而对于 ANN 分析方法,R=0.99、MSE=2.167、RMSE=1.472 和 MAPE=1.276。这些结果表明,ANN 方法具有更高的性能指标。对于第二种情况,基于能量效率研究,RSM 模型的 R、MSE、RMSE 和 MAPE 值分别为 0.97、2.230、1.493 和 2.903。同样基于 ANN 模型,R、MSE、RMSE 和 MAPE 值分别为 0.99、0.246、0.46 和 0.615。从性能指标来看,ANN 模型在预测氮氧化物去除/减少和效率方面比 RSM 模型更准确。这些模型表明它们与实验结果具有很强的一致性。实验结果表明,基于 RSM 模型得出的最佳条件可将氮氧化物的最大还原率提高到 60.5%,能量效率提高到 66.24g/J。两种模型之间的比较证实了这一发现,而 ANN 模型与实验证据的相关性更强。