Aoki Joseph, Khalid Omar, Kaya Cihan, Kothari Tarush, Silberman Mark, Skordis Con, Hughes Jonathan, Hussong Jerry, Salama Mohamed E
Sonic Healthcare USA, 12357A - A Riata Trace Parkway, Suite 210, Austin, TX 78727, USA.
Bone Rep. 2024 Jul 4;22:101787. doi: 10.1016/j.bonr.2024.101787. eCollection 2024 Sep.
Recently, we developed the machine learning (ML)-based Progressive CKD Risk Classifier (PCRC), which accurately predicts CKD progression within 5 years. While its performance is robust, it is unknown whether PCRC categorization is associated with CKD-mineral bone disorder (CKD-MBD), a critical, yet under-recognized, downstream consequence. Therefore, we aimed to 1) survey real-world testing utilization data for CKD-MBD and 2) evaluate ML-based PCRC categorization with CKD-MBD.
The cohort study utilized deidentified data from a US laboratory outpatient network, composed of 330,238 outpatients, over 5 years. The main outcomes were: 1) Laboratory testing utilization of eGFR, urine albumin creatinine ratio (UACR), parathyroid hormone (PTH), calcium, phosphate; and 2) PCRC categorization and biochemical abnormalities associated with CKD-MBD over 5 years.
We identified significant under-utilization of laboratory testing for UACR, phosphate and PTH, which ranged from -40 % to -100 % against the minimum standard-of-care. At five years, the CKD progression group, as predicted by the PCRC, was associated with 15.5 % increase in phosphate ( value <<0.01) and 94.9 % increase in PTH (P value <<0.01), consistent with CKD-MBD.
We identified significant under-utilization of laboratory testing for CKD-MBD. Moreover, we demonstrated that CKD progression, as predicted by the PCRC, is associated with CKD-MBD, several years in advance of disease. To our knowledge, this investigation is the first to examine the role of predictive analytics for CKD progression on mineral bone disorder. While further studies are required, these findings have the potential to advance AI/ML-based risk stratification and treatment of CKD and CKD-MBD.
最近,我们开发了基于机器学习(ML)的慢性肾脏病进展风险分类器(PCRC),它能够准确预测5年内的慢性肾脏病进展情况。虽然其性能强劲,但尚不清楚PCRC分类是否与慢性肾脏病-矿物质和骨异常(CKD-MBD)相关,CKD-MBD是一个关键但未得到充分认识的下游后果。因此,我们旨在:1)调查CKD-MBD的实际检测利用数据;2)评估基于ML的PCRC分类与CKD-MBD的关系。
这项队列研究利用了美国一个实验室门诊网络5年多来的去识别化数据,该网络由330238名门诊患者组成。主要结果包括:1)估算肾小球滤过率(eGFR)、尿白蛋白肌酐比值(UACR)、甲状旁腺激素(PTH)、钙、磷的实验室检测利用率;2)5年内与CKD-MBD相关的PCRC分类和生化异常情况。
我们发现UACR、磷和PTH的实验室检测存在显著利用不足的情况,与最低护理标准相比,利用率在-40%至-100%之间。5年后,PCRC预测的慢性肾脏病进展组与磷增加15.5%(P值<<0.01)和PTH增加94.9%(P值<<0.01)相关,这与CKD-MBD一致。
我们发现CKD-MBD的实验室检测存在显著利用不足的情况。此外,我们证明,PCRC预测的慢性肾脏病进展与CKD-MBD相关,比疾病发生提前数年。据我们所知,这项研究是首次探讨预测分析在慢性肾脏病进展对矿物质和骨异常方面的作用。虽然还需要进一步研究,但这些发现有可能推动基于人工智能/机器学习的慢性肾脏病和CKD-MBD风险分层及治疗。