Aoki Joseph, Kaya Cihan, Khalid Omar, Kothari Tarush, Silberman Mark A, Skordis Con, Hughes Jonathan, Hussong Jerry, Salama Mohamed E
Sonic Healthcare USA.
Kidney Med. 2023 Jun 24;5(9):100692. doi: 10.1016/j.xkme.2023.100692. eCollection 2023 Sep.
RATIONALE & OBJECTIVE: Chronic kidney disease (CKD) is a major cause of morbidity and mortality. To date, there are no widely used machine-learning models that can predict progressive CKD across the entire disease spectrum, including the earliest stages. The objective of this study was to use readily available demographic and laboratory data from Sonic Healthcare USA laboratories to train and test the performance of machine learning-based predictive risk models for CKD progression.
Retrospective observational study.
SETTING & PARTICIPANTS: The study population was composed of deidentified laboratory information services data procured from a large US outpatient laboratory network. The retrospective data set included 110,264 adult patients over a 5-year period with initial estimated glomerular filtration rate (eGFR) values between 15-89 mL/min/1.73 m.
Patient demographic and laboratory characteristics.
Accelerated (ie, >30%) eGFR decline associated with CKD progression within 5 years.
Machine-learning models were developed using random forest survival methods, with laboratory-based risk factors analyzed as potential predictors of significant eGFR decline.
The 7-variable risk classifier model accurately predicted an eGFR decline of >30% within 5 years and achieved an area under the curve receiver-operator characteristic of 0.85. The most important predictor of progressive decline in kidney function was the eGFR slope. Other key contributors to the model included initial eGFR, urine albumin-creatinine ratio, serum albumin (initial and slope), age, and sex.
The cohort study did not evaluate the role of clinical variables (eg, blood pressure) on the performance of the model.
Our progressive CKD classifier accurately predicts significant eGFR decline in patients with early, mid, and advanced disease using readily obtainable laboratory data. Although prospective studies are warranted, our results support the clinical utility of the model to improve timely recognition and optimal management for patients at risk for CKD progression.
PLAIN-LANGUAGE SUMMARY: Defined by a significant decrease in estimated glomerular filtration rate (eGFR), chronic kidney disease (CKD) progression is strongly associated with kidney failure. However, to date, there are no broadly used resources that can predict this clinically significant event. Using machine-learning techniques on a diverse US population, this cohort study aimed to address this deficiency and found that a 5-year risk prediction model for CKD progression was accurate. The most important predictor of progressive decline in kidney function was the eGFR slope, followed by the urine albumin-creatinine ratio and serum albumin slope. Although further study is warranted, the results showed that a machine-learning model using readily obtainable laboratory information accurately predicts CKD progression, which may inform clinical diagnosis and management for this at-risk population.
慢性肾脏病(CKD)是发病和死亡的主要原因。迄今为止,尚无广泛应用的机器学习模型能够在包括最早阶段在内的整个疾病谱中预测CKD进展。本研究的目的是利用美国索诺声医疗公司实验室中易于获取的人口统计学和实验室数据,训练和测试基于机器学习的CKD进展预测风险模型的性能。
回顾性观察研究。
研究人群由从美国一个大型门诊实验室网络获取的去识别化实验室信息服务数据组成。回顾性数据集包括110264例成年患者,这些患者在5年期间的初始估算肾小球滤过率(eGFR)值在15-89 mL/min/1.73m²之间。
患者人口统计学和实验室特征。
与5年内CKD进展相关的加速(即>30%)eGFR下降。
使用随机森林生存方法开发机器学习模型,将基于实验室的危险因素作为eGFR显著下降的潜在预测因素进行分析。
7变量风险分类模型准确预测了5年内eGFR下降>30%,曲线下面积(受试者工作特征曲线)为0.85。肾功能进行性下降的最重要预测因素是eGFR斜率。该模型的其他关键因素包括初始eGFR、尿白蛋白肌酐比值、血清白蛋白(初始值和斜率)、年龄和性别。
队列研究未评估临床变量(如血压)对模型性能的作用。
我们的CKD进展分类器使用易于获得的实验室数据,准确预测了早期、中期和晚期疾病患者的eGFR显著下降。尽管需要进行前瞻性研究,但我们的结果支持该模型在临床上的实用性,有助于及时识别和优化管理有CKD进展风险的患者。
慢性肾脏病(CKD)进展由估算肾小球滤过率(eGFR)显著下降定义,与肾衰竭密切相关。然而,迄今为止,尚无广泛应用的资源能够预测这一具有临床意义的事件。本队列研究在美国多样化人群中使用机器学习技术,旨在解决这一不足,发现了一个用于预测CKD进展的5年风险预测模型是准确的。肾功能进行性下降的最重要预测因素是eGFR斜率,其次是尿白蛋白肌酐比值和血清白蛋白斜率。尽管需要进一步研究,但结果表明,使用易于获得的实验室信息的机器学习模型能够准确预测CKD进展,这可能为这一高危人群的临床诊断和管理提供参考。