Dagommer Matthieu, Daneshzand Mohammad, Nummemnaa Aapo, Guerin Bastien
École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), Paris France.
Harvard Medical School, Boston MA.
medRxiv. 2024 Jul 18:2024.07.18.24310644. doi: 10.1101/2024.07.18.24310644.
Transcranial focused ultrasound (tFUS) is an emerging neuromodulation approach that has been demonstrated in animals but is difficult to translate to humans because of acoustic attenuation and scattering in the skull. Optimal dose delivery requires subject-specific skull porosity estimates which has traditionally been done using CT. We propose a deep learning (DL) estimation of skull porosity from T1-weighted MRI images which removes the need for radiation-inducing CT scans.
We evaluate the impact of different DL approaches, including network architecture, input size and dimensionality, multichannel inputs, data augmentation, and loss functions. We also propose back-propagation in the mask (BIM), a method whereby only voxels inside the skull mask contribute to training. We evaluate the robustness of the best model to input image noise and MRI acquisition parameters and propagate porosity estimation errors in thousands of beam propagation scenarios.
Our best performing model is a cGAN with a ResNet-9 generator with 3D 64×64×64 inputs trained with L1 and L2 losses. The model achieved a mean absolute error of 6.9% in the test set, compared to 9.5% with the pseudo-CT of Izquierdo et al. (38% improvement) and 9.4% with the generic pixel-to-pixel image translation cGAN pix2pix (36% improvement). Acoustic dose distributions in the thalamus were more accurate with our approach than with the pseudo-CT approach of both Burgos et al. and Izquierdo et al, resulting in near-optimal treatment planning and dose estimation at all frequencies compared to CT (reference).
Our DL approach porosity estimates with ~7% error, is robust to input image noise and MRI acquisition parameters (sequence, coils, field strength) and yields near-optimal treatment planning and dose estimates for both central (thalamus) and lateral brain targets (amygdala) in the 200-1000 kHz frequency range.
经颅聚焦超声(tFUS)是一种新兴的神经调节方法,已在动物实验中得到验证,但由于颅骨中的声学衰减和散射,难以应用于人体。最佳剂量传递需要针对个体的颅骨孔隙率估计,传统上这是通过CT来完成的。我们提出一种从T1加权MRI图像中深度学习(DL)估计颅骨孔隙率的方法,该方法无需进行辐射性CT扫描。
我们评估了不同DL方法的影响,包括网络架构、输入大小和维度、多通道输入、数据增强和损失函数。我们还提出了掩码反向传播(BIM),这是一种仅让颅骨掩码内的体素参与训练的方法。我们评估了最佳模型对输入图像噪声和MRI采集参数的鲁棒性,并在数千个波束传播场景中传播孔隙率估计误差。
我们表现最佳的模型是一个带有ResNet - 9生成器的cGAN,其输入为3D 64×64×64,采用L1和L2损失进行训练。该模型在测试集中的平均绝对误差为6.9%,相比Izquierdo等人的伪CT为9.5%(提高了38%),以及通用的逐像素图像翻译cGAN pix2pix为9.4%(提高了36%)。与Burgos等人和Izquierdo等人的伪CT方法相比,我们的方法在丘脑中的声学剂量分布更准确,与CT(参考)相比,在所有频率下都能实现接近最优的治疗计划和剂量估计。
我们的DL方法孔隙率估计误差约为7%,对输入图像噪声和MRI采集参数(序列、线圈、场强)具有鲁棒性,并在200 - 1000 kHz频率范围内为中央(丘脑)和外侧脑目标(杏仁核)产生接近最优的治疗计划和剂量估计。