Suppr超能文献

基于深度学习合成 CT 的经颅磁共振成像引导聚焦超声介入。

Transcranial MR Imaging-Guided Focused Ultrasound Interventions Using Deep Learning Synthesized CT.

机构信息

From the Department of Diagnostic Radiology and Nuclear Medicine (P.S., S.G., S.R., E.R.M., D.G., R.G., J.Z.), University of Maryland School of Medicine, Baltimore, Maryland.

Siemens Medical Solutions USA (P.S., H.B.), Malvern, Pennsylvania.

出版信息

AJNR Am J Neuroradiol. 2020 Oct;41(10):1841-1848. doi: 10.3174/ajnr.A6758. Epub 2020 Sep 3.

Abstract

BACKGROUND AND PURPOSE

Transcranial MR imaging-guided focused ultrasound is a promising novel technique to treat multiple disorders and diseases. Planning for transcranial MR imaging-guided focused ultrasound requires both a CT scan for skull density estimation and treatment-planning simulation and an MR imaging for target identification. It is desirable to simplify the clinical workflow of transcranial MR imaging-guided focused ultrasound treatment planning. The purpose of this study was to examine the feasibility of deep learning techniques to convert MR imaging ultrashort TE images directly to synthetic CT of the skull images for use in transcranial MR imaging-guided focused ultrasound treatment planning.

MATERIALS AND METHODS

The U-Net neural network was trained and tested on data obtained from 41 subjects (mean age, 66.4 ± 11.0 years; 15 women). The derived neural network model was evaluated using a k-fold cross-validation method. Derived acoustic properties were verified by comparing the whole skull-density ratio from deep learning synthesized CT of the skull with the reference CT of the skull. In addition, acoustic and temperature simulations were performed using the deep learning CT to predict the target temperature rise during transcranial MR imaging-guided focused ultrasound.

RESULTS

The derived deep learning model generates synthetic CT of the skull images that are highly comparable with the true CT of the skull images. Their intensities in Hounsfield units have a spatial correlation coefficient of 0.80 ± 0.08, a mean absolute error of 104.57 ± 21.33 HU, and a subject-wise correlation coefficient of 0.91. Furthermore, deep learning CT of the skull is reliable in the skull-density ratio estimation ( = 0.96). A simulation study showed that both the peak target temperatures and temperature distribution from deep learning CT are comparable with those of the reference CT.

CONCLUSIONS

The deep learning method can be used to simplify workflow associated with transcranial MR imaging-guided focused ultrasound.

摘要

背景与目的

经颅磁共振成像引导聚焦超声是一种有前途的治疗多种疾病的新技术。经颅磁共振成像引导聚焦超声的规划需要进行 CT 扫描以估计颅骨密度和进行治疗计划模拟,以及磁共振成像以进行目标识别。简化经颅磁共振成像引导聚焦超声治疗计划的临床工作流程是很有必要的。本研究的目的是探讨深度学习技术将磁共振成像超短回波(TE)图像直接转换为颅骨的合成 CT 图像,以便用于经颅磁共振成像引导聚焦超声治疗计划的可行性。

材料与方法

该 U-Net 神经网络在 41 名受试者(平均年龄,66.4±11.0 岁;15 名女性)的数据上进行了训练和测试。采用 k 折交叉验证方法评估所得到的神经网络模型。通过比较从深度学习合成的颅骨 CT 得出的整个颅骨密度比与颅骨参考 CT,验证了衍生的声学特性。此外,还使用深度学习 CT 进行声学和温度模拟,以预测经颅磁共振成像引导聚焦超声过程中的目标温升。

结果

所得到的深度学习模型生成的颅骨合成 CT 图像与真实的颅骨 CT 图像高度相似。它们的 CT 值在亨氏单位中具有 0.80±0.08 的空间相关系数、104.57±21.33 HU 的平均绝对误差和 0.91 的受试者相关性。此外,颅骨深度学习 CT 在颅骨密度比估计方面是可靠的(r=0.96)。一项模拟研究表明,深度学习 CT 的峰值目标温度和温度分布与参考 CT 相当。

结论

深度学习方法可用于简化经颅磁共振成像引导聚焦超声相关的工作流程。

相似文献

4
Acoustic Simulation for Transcranial Focused Ultrasound Using GAN-Based Synthetic CT.基于 GAN 的颅穿透聚焦超声声模拟的合成 CT
IEEE J Biomed Health Inform. 2022 Jan;26(1):161-171. doi: 10.1109/JBHI.2021.3103387. Epub 2022 Jan 17.
5
Classical and Learned MR to Pseudo-CT Mappings for Accurate Transcranial Ultrasound Simulation.经典和学习型磁共振到伪 CT 映射,实现精确经颅超声模拟。
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2896-2905. doi: 10.1109/TUFFC.2022.3198522. Epub 2022 Sep 27.

引用本文的文献

8
Classical and Learned MR to Pseudo-CT Mappings for Accurate Transcranial Ultrasound Simulation.经典和学习型磁共振到伪 CT 映射,实现精确经颅超声模拟。
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2896-2905. doi: 10.1109/TUFFC.2022.3198522. Epub 2022 Sep 27.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验