Suppr超能文献

用于钙钛矿太阳能电池的卟啉基空穴传输材料:通过智能合成提高性能

Porphyrin-Based Hole-Transporting Materials for Perovskite Solar Cells: Boosting Performance with Smart Synthesis.

作者信息

Reis Melani J A, Pereira Ana M V M, Moura Nuno M M, Neves Maria G P M S

机构信息

LAQV-Requimte and Department of Chemistry, University of Aveiro, 3010-193 Aveiro, Portugal.

LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

出版信息

ACS Omega. 2024 Jul 9;9(29):31196-31219. doi: 10.1021/acsomega.4c01961. eCollection 2024 Jul 23.

Abstract

Perovskite solar cells (PSCs) are becoming a promising and revolutionary advancement within the photovoltaic field globally. Continuous improvement in efficiency, straightforward processing methods, and use of lightweight and cost-effective materials represent superior features, among other notable aspects. Still, long-term stability and durability are issues to address to facilitate widespread commercial adoption and practical application prospects. Research has focused on overcoming these challenges, and charge transport materials play a critical role in determining charge dynamics, photovoltaic performance, and device stability. Conventional hole-transporting materials (HTMs), spiro-OMeTAD and PTAA, contribute to remarkable power conversion efficiencies owing to high thin-film quality and matched energy alignment. However, they often show a high material cost, low carrier mobility, and poor stability, which greatly limit their practical applications. Now, this review outlines recent advances in synthetic approaches to porphyrin-based HTMs to tune the charge dynamics by optimizing their molecular structures and properties. The main structural features comprise porphyrins of A-type, AB-type, and photosynthetic pigment analogues. Strategies include well-established routes to provide the required macrocycles, such as condensation of pyrrole or dipyrromethanes with suitable aldehydes, metalation of the porphyrin inner core, and postfunctionalization of peripheral positions. These functionalizations involve conventional procedures (e.g., halogenation, esterification, transesterification, nucleophilic oxidation, reduction, and nucleophilic substitution) as well as metal-catalyzed ones such as Suzuki-Miyaura, Sonogashira, Buchwald-Hartwig, and Ullmann cross-coupling reactions. As HTMs can also protect the perovskite layer from the external environment, porphyrin structures play a pivotal role in chemical, mechanical, and environmental stability, with their high hydrophobicity ability as the most significant parameter. The impact of porphyrins on the hole hopping of other HTMs while acting as an additive or an interlayer, passivating defects, and improving charge transport is also highlighted to provide real insights into ways to develop efficient and stable porphyrin-based materials for PSCs. This perspective aims to guide the scientific community in the design of new porphyrin molecules to place PSCs as an outperformer in photovoltaic technologies.

摘要

钙钛矿太阳能电池(PSCs)正成为全球光伏领域一项充满前景且具有变革性的进展。在效率方面的持续提升、简单的加工方法以及使用轻质且经济高效的材料等都是其显著特性,还有其他值得注意的方面。然而,长期稳定性和耐久性仍是需要解决的问题,以促进其广泛的商业应用和实际应用前景。研究一直聚焦于克服这些挑战,而电荷传输材料在决定电荷动力学、光伏性能和器件稳定性方面起着关键作用。传统的空穴传输材料(HTMs),如螺环-OMeTAD和PTAA,由于具有高质量的薄膜和匹配的能量排列,有助于实现显著的功率转换效率。然而,它们往往材料成本高、载流子迁移率低且稳定性差,这极大地限制了它们的实际应用。现在,这篇综述概述了基于卟啉的空穴传输材料合成方法的最新进展,通过优化其分子结构和性能来调节电荷动力学。主要结构特征包括A型、AB型卟啉以及光合色素类似物。策略包括提供所需大环化合物的成熟路线,如吡咯或二吡咯甲烷与合适醛的缩合、卟啉内核的金属化以及外围位置的后功能化。这些功能化涉及传统方法(如卤化、酯化、酯交换、亲核氧化、还原和亲核取代)以及金属催化的反应,如铃木-宫浦反应、园茂-史ira反应、布赫瓦尔德-哈特维希反应和乌尔曼交叉偶联反应。由于空穴传输材料还可以保护钙钛矿层免受外部环境影响,卟啉结构在化学、机械和环境稳定性方面起着关键作用,其高疏水性能力是最重要的参数。还强调了卟啉在作为添加剂或中间层时对其他空穴传输材料的空穴跳跃、钝化缺陷和改善电荷传输的影响,以便为开发用于钙钛矿太阳能电池的高效且稳定的基于卟啉的材料提供切实的见解。这一观点旨在指导科学界设计新的卟啉分子,使钙钛矿太阳能电池在光伏技术中脱颖而出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a73c/11270557/edcaedcfcd76/ao4c01961_0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验