Suppr超能文献

利用等离子体金纳米粒子修饰的基于 WO 纳米线的异质结,通过阳光驱动的光热增强光催化消除超级细菌。

Sunlight-Driven Photothermally Boosted Photocatalytic Eradication of Superbugs Using a Plasmonic Gold Nanoparticle-Decorated WO Nanowire-Based Heterojunction.

作者信息

Pramanik Avijit, Rai Shivangee, Gates Kaelin, Kolawole Olorunsola Praise, Kundu Sanchita, Kasani-Akula Pragathi, Singh Jagriti, Dasary Jerusha, Zhang Huimin, Han Fengxiang X, Ray Paresh Chandra

机构信息

Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States.

出版信息

ACS Omega. 2024 Jul 8;9(29):32256-32267. doi: 10.1021/acsomega.4c05327. eCollection 2024 Jul 23.

Abstract

Superbug infections are currently one of the biggest global health problems in our society. Herein, we report the design of a plasmonic gold nanoparticle (GNP)-decorated WO nanowire-based heterojunction for the proficient usage of sunlight-based renewable energy to inactivate 100% superbugs via photothermally boosted photocatalytic action. Additionally, a synergistic photothermal and photocatalytic approach has been used for sunlight-driven complete eradication of carbapenem-resistant Enterobacteriaceae (CRE ) and methicillin-resistant (MRSA) superbugs. Interestingly, photocatalytic activity of methylene blue (MB) dye degradation in the presence of 670 nm near-infrared light shows that photothermally boosted photocatalytic performance is much superior to that of only a photocatalytic or photothermal process. The observed higher photocatalytic performance for the heterojunction is because the plasmonic GNP enhanced the absorption capability at 670 nm and increased the temperature of the photocatalyst surface, which reduces the activation energy of the degradation reaction. Similarly, sunlight-driven photocatalytic experiments show 100% degradation of MB after 60 min of sunlight irradiation. Moreover, sunlight-based photocatalytic inactivation of MRSA and CRE experiments show 100% inactivation after 60 min of light irradiation.

摘要

超级细菌感染是当前我们社会中最大的全球健康问题之一。在此,我们报告了一种基于等离子体金纳米颗粒(GNP)修饰的WO纳米线异质结的设计,用于高效利用基于阳光的可再生能源,通过光热增强的光催化作用使100%的超级细菌失活。此外,一种协同的光热和光催化方法已被用于阳光驱动的对耐碳青霉烯类肠杆菌科细菌(CRE)和耐甲氧西林金黄色葡萄球菌(MRSA)超级细菌的完全根除。有趣的是,在670 nm近红外光存在下亚甲基蓝(MB)染料降解的光催化活性表明,光热增强的光催化性能远优于仅光催化或光热过程。观察到的异质结更高的光催化性能是因为等离子体GNP增强了在670 nm处的吸收能力,并提高了光催化剂表面的温度,这降低了降解反应的活化能。同样,阳光驱动的光催化实验表明,在阳光照射60分钟后MB降解100%。此外,基于阳光的MRSA和CRE光催化失活实验表明,光照60分钟后失活率为100%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验