Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States.
ACS Appl Bio Mater. 2023 Feb 20;6(2):919-931. doi: 10.1021/acsabm.3c00057. Epub 2023 Feb 6.
The rapid emergence of superbugs which are resistant to existing antibiotics is becoming a huge global threat to public health, which demands the discovery of next-generation antibacterial agents for combating superbugs. Herein, we report the design of a two-dimensional (2D) reduced graphene oxide (r-GO) and one-dimensional (1D) WO nanowire-based photothermal-photocatalytic heterostructure for combating multiantibiotic-resistant DT104, carbapenem-resistant , and methicillin-resistant superbugs. In the presence of near-infrared (NIR) light, due to the generation of electrons and holes, the WO-based heterostructure generates reactive oxygen species by photocatalytic reaction from water and oxygen, which kills superbugs. To enhance the photocatalytic superbug killing efficiency, r-GO has been used for suppressing the recombination of the photoinduced electron-hole pairs. Reported data show that NIR light-driven synergistic photocatalytic-photothermal processes can be used for 100% degradation of methylene blue using a heterostructure-based catalyst, and the photodegradation rate for the heterostructure is much better than the literature data for different types of WO/GO-based nanocomposites. Experimentally, time-dependent antibacterial efficiency data reveals that the heterostructure can destroy 100% superbugs within 30 min of light exposure via a synergistic photothermal and photocatalytic mechanism, whereas the WO nanowire can kill around 35% superbugs only via photocatalytic action only and r-GO can kill 25% superbugs via photothermal action even after 30 min of exposure to light. Systematic time-dependent microscopy and spectroscopy studies reveal that the excellent antisuperbug activities for heterostructures are due to membrane damage, ATP, and DNA/RNA breakage. For possible real-life applications, sun light-based superbug inactivation shows 100% inactivation possible within 250 min of light exposure using 12 mg/mL heterostructures. The reported sun light-driven killing of superbugs provides a simple and versatile platform to combat drug-resistant superbugs.
现有抗生素耐药性超级细菌的迅速出现,正对全球公共健康构成巨大威胁,因此需要开发新一代抗菌剂来对抗超级细菌。在此,我们报告了一种二维(2D)还原氧化石墨烯(r-GO)和一维(1D)WO 纳米线基光热-光催化杂化结构的设计,用于对抗多抗生素耐药性 DT104、碳青霉烯耐药性 和耐甲氧西林 超级细菌。在近红外(NIR)光的存在下,由于电子和空穴的产生,WO 基杂化结构通过水和氧气的光催化反应产生活性氧物质,从而杀死超级细菌。为了提高光催化杀菌效率,r-GO 用于抑制光生电子-空穴对的复合。报告的数据表明,基于 NIR 光驱动协同光催化-光热过程可用于 100%降解亚甲基蓝,使用基于杂化结构的催化剂,光降解率明显优于不同类型 WO/GO 基纳米复合材料的文献数据。实验上,时间依赖性抗菌效率数据表明,杂化结构可以通过协同光热和光催化机制在 30 分钟的光照暴露下破坏 100%的超级细菌,而 WO 纳米线仅通过光催化作用可以杀死约 35%的超级细菌,r-GO 即使在 30 分钟的光照暴露后也可以通过光热作用杀死 25%的超级细菌。系统的时间依赖性显微镜和光谱学研究表明,杂化结构具有优异的抗超级细菌活性,这是由于膜损伤、ATP 和 DNA/RNA 断裂。对于可能的实际应用,基于太阳光的超级细菌失活动力学表明,使用 12 mg/mL 杂化结构,在 250 分钟的光照暴露下,可实现 100%的失活。所报道的太阳光驱动的超级细菌杀灭为对抗耐药性超级细菌提供了一种简单而通用的平台。