Suppr超能文献

定制化血管修复微环境:负载 bFGF 和 Ag@FeO 核壳纳米线的聚乳酸-明胶纳米纤维支架。

Customized Vascular Repair Microenvironment: Poly(lactic acid)-Gelatin Nanofibrous Scaffold Decorated with bFGF and Ag@FeO Core-Shell Nanowires.

机构信息

South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou 510640, China.

Guangdong Second Provincial General Hospital, Guangzhou 510317, China.

出版信息

ACS Appl Mater Interfaces. 2024 Aug 7;16(31):40787-40804. doi: 10.1021/acsami.4c09269. Epub 2024 Jul 29.

Abstract

Vascular defects caused by trauma or vascular diseases can significantly impact normal blood circulation, resulting in serious health complications. Vascular grafts have evolved as a popular approach for vascular reconstruction with promising outcomes. However, four of the greatest challenges for successful application of small-diameter vascular grafts are (1) postoperative anti-infection, (2) preventing thrombosis formation, (3) utilizing the inflammatory response to the graft to induce tissue regeneration and repair, and (4) noninvasive monitoring of the scaffold and integration. The present study demonstrated a basic fibroblast growth factor (bFGF) and oleic acid dispersed Ag@FeO core-shell nanowires (OA-Ag@FeO CSNWs) codecorated poly(lactic acid) (PLA)/gelatin (Gel) multifunctional electrospun vascular grafts (bAPG). The Ag@FeO CSNWs have sustained Ag release and exceptional photothermal capabilities to effectively suppress bacterial infections both and , noninvasive magnetic resonance imaging (MRI) modality to monitor the position of the graft, and antiplatelet adhesion properties to promise long-term patency. The gradually released bFGF from the bAPG scaffold promotes the M2 macrophage polarization and enhances the recruitment of macrophages, endothelial cells (ECs) and fibroblast cells. This significant regulation of diverse cell behavior has been proven to be beneficial to vascular repair and regeneration both and . Therefore, this study supplies a method to prepare multifunctional vascular-repair materials and is expected to represent a significant guidance and reference to the development of biomaterials for vascular tissue engineering.

摘要

创伤或血管疾病引起的血管缺陷会显著影响正常血液循环,导致严重的健康并发症。血管移植物已成为血管重建的一种流行方法,具有良好的效果。然而,成功应用小直径血管移植物面临四个最大的挑战:(1)术后抗感染,(2)防止血栓形成,(3)利用移植物的炎症反应诱导组织再生和修复,(4)支架和整合的非侵入性监测。本研究展示了一种碱性成纤维细胞生长因子(bFGF)和油酸分散的 Ag@FeO 核壳纳米线(OA-Ag@FeO CSNWs)共修饰的聚乳酸(PLA)/明胶(Gel)多功能静电纺丝血管移植物(bAPG)。Ag@FeO CSNWs 具有持续释放 Ag 和出色的光热性能,可有效抑制细菌感染和 ,非侵入性磁共振成像(MRI)模式来监测移植物的位置,以及抗血小板黏附特性,以保证长期通畅。bAPG 支架中逐渐释放的 bFGF 促进 M2 巨噬细胞极化,并增强巨噬细胞、内皮细胞(ECs)和成纤维细胞的募集。这种对多种细胞行为的显著调节被证明对血管修复和再生都有益处。因此,本研究提供了一种制备多功能血管修复材料的方法,有望为血管组织工程生物材料的发展提供重要的指导和参考。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验