Suppr超能文献

多组学分析突出了阿尔茨海默病临床和神经病理学诊断之间的分子差异。

Multi-omics analyses highlight molecular differences between clinical and neuropathological diagnoses in Alzheimer's disease.

机构信息

Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.

Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Eur J Neurosci. 2024 Sep;60(5):4922-4936. doi: 10.1111/ejn.16482. Epub 2024 Jul 28.

Abstract

Both clinical diagnosis and neuropathological diagnosis are commonly used in literature to categorize individuals as Alzheimer's disease (AD) or non-AD in omics analyses. Whether these diagnostic strategies result in distinct profiles of molecular abnormalities is poorly understood. Here, we analysed one of the most commonly used AD omics datasets in the literature from the Religious Orders Study and Memory and Aging Project (ROSMAP) cohort and compared the two diagnosis strategies using brain transcriptome and metabolome by grouping individuals as non-AD and AD according to clinical or neuropathological diagnosis separately. Differentially expressed genes, associated pathways related with AD hallmarks and AD-related genes showed that the categorization based on neuropathological diagnosis more accurately reflects the disease state at the molecular level than the categorization based on clinical diagnosis. We further identified consensus biomarker candidates between the two diagnosis strategies such as 5-hydroxylysine, sphingomyelin and 1-myristoyl-2-palmitoyl-GPC as metabolite biomarkers and sphingolipid metabolism as a pathway biomarker, which could be robust AD biomarkers since they are independent of diagnosis strategies. We also used consensus AD and consensus non-AD individuals between the two diagnostic strategies to train a machine-learning based model, which we used to classify the individuals who were cognitively normal but diagnosed as AD based on neuropathological diagnosis (asymptomatic AD individuals). The majority of these individuals were classified as consensus AD patients for both omics data types. Our study provides a detailed characterization of both diagnostic strategies in terms of the association of the corresponding multi-omics profiles with AD.

摘要

临床诊断和神经病理学诊断在文献中常用于将个体归类为阿尔茨海默病(AD)或非 AD,在组学分析中。这些诊断策略是否导致分子异常的不同特征尚不清楚。在这里,我们分析了文献中最常用的 AD 组学数据集之一,来自宗教秩序研究和记忆与衰老项目(ROSMAP)队列,并通过根据临床或神经病理学诊断分别将个体分组为非 AD 和 AD,使用大脑转录组和代谢组比较了这两种诊断策略。差异表达基因、与 AD 标志物相关的途径以及 AD 相关基因表明,基于神经病理学诊断的分类比基于临床诊断的分类更能准确反映分子水平的疾病状态。我们还确定了两种诊断策略之间的共识生物标志物候选物,如 5-羟赖氨酸、神经鞘磷脂和 1-肉豆蔻酰-2-棕榈酰-GPC 作为代谢物生物标志物,以及鞘脂代谢作为途径生物标志物,这些生物标志物可能是稳健的 AD 生物标志物,因为它们独立于诊断策略。我们还使用两种诊断策略之间的共识 AD 和共识非 AD 个体来训练基于机器学习的模型,我们使用该模型对根据神经病理学诊断被诊断为 AD 但认知正常的个体进行分类(无症状 AD 个体)。这两种组学数据类型的大多数个体都被分类为共识 AD 患者。我们的研究提供了对这两种诊断策略的详细特征描述,包括相应的多组学特征与 AD 的关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验