Tian Mengyao, Li Xin, Song Aisheng, Xu Chenyang, Yuan Yongjiu, Cheng Qian, Zuo Pei, Wang Sumei, Liang Misheng, Wang Ruoxi, Ma Tianbao, Qu Liangti, Jiang Lan
Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.
State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, P.R. China.
Adv Sci (Weinh). 2024 Sep;11(36):e2403378. doi: 10.1002/advs.202403378. Epub 2024 Jul 29.
Ultra-thin 2D materials have great potential as electrodes for micro-supercapacitors (MSCs) because of their facile ion transport channels. Here, a high-precision controllable photonic-synthesis strategy that provided 1 inch wafer-scale ultra-thin film arrays of alloyed WMoS with sulfur vacancies and expanded interlayer (13.2 Å, twice of 2H MoS) is reported. This strategy regulates the nucleation and growth of transition metal dichalcogenides (TMDs) on the picosecond or even femtosecond scale, which induces Mo-W alloying, interlayer expansion, and sulfur loss. Therefore, the diffusion barrier of WMoS is reduced, with charge transfer and ion diffusion enhancing. The as-prepared symmetric MSCs with the size of 100 × 100 µm achieve ultrahigh specific capacitance (242.57 mF cm and 242567.83 F cm), and energy density (21.56 Wh cm with power density of 485.13 W cm). The established synthesis strategy fits numerous materials, which provides a universal method for the flexible synthesis of electrodes in microenergy devices.
超薄二维材料因其便捷的离子传输通道而在微型超级电容器(MSC)电极方面具有巨大潜力。在此,报道了一种高精度可控的光子合成策略,该策略可提供具有硫空位和层间距扩大(13.2 Å,是2H MoS的两倍)的合金化WMoS的1英寸晶圆级超薄膜阵列。该策略在皮秒甚至飞秒尺度上调节过渡金属二硫属化物(TMD)的成核和生长,从而诱导Mo-W合金化、层间扩展和硫损失。因此,WMoS的扩散势垒降低,电荷转移和离子扩散增强。所制备的尺寸为100×100 µm的对称MSC实现了超高比电容(242.57 mF cm²和242567.83 F cm²)以及能量密度(21.56 Wh cm³,功率密度为485.13 W cm³)。所建立的合成策略适用于多种材料,为微能量装置中电极的灵活合成提供了一种通用方法。