Department of Oncological Sciences, University of Utah, Salt Lake City, Utah, USA.
Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA.
Pigment Cell Melanoma Res. 2024 Nov;37(6):854-863. doi: 10.1111/pcmr.13189. Epub 2024 Jul 28.
Gene expression profiling technologies have revolutionized cell biology, enabling researchers to identify gene signatures linked to various biological attributes of melanomas, such as pigmentation status, differentiation state, proliferative versus invasive capacity, and disease progression. Although the discovery of gene signatures has significantly enhanced our understanding of melanocytic phenotypes, reconciling the numerous signatures reported across independent studies and different profiling platforms remains a challenge. Current methods for classifying melanocytic gene signatures depend on exact gene overlap and comparison with unstandardized baseline transcriptomes. In this study, we aimed to categorize published gene signatures into clusters based on their similar patterns of expression across clinical cutaneous melanoma specimens. We analyzed nearly 800 melanoma samples from six gene expression repositories and developed a classification framework for gene signatures that is resilient against biases in gene identification across profiling platforms and inconsistencies in baseline standards. Using 39 frequently cited published gene signatures, our analysis revealed seven principal classes of gene signatures that correlate with previously identified phenotypes: Differentiated, Mitotic/MYC, AXL, Amelanotic, Neuro, Hypometabolic, and Invasive. Each class is consistent with the phenotypes that the constituent gene signatures represent, and our classification method does not rely on overlapping genes between signatures. To facilitate broader application, we created WIMMS (what is my melanocytic signature, available at https://wimms.tanlab.org/), a user-friendly web application. WIMMS allows users to categorize any gene signature, determining its relationship to predominantly cited signatures and its representation within the seven principal classes.
基因表达谱技术彻底改变了细胞生物学,使研究人员能够识别与黑色素瘤的各种生物学属性相关的基因特征,例如色素沉着状态、分化状态、增殖与侵袭能力以及疾病进展。尽管基因特征的发现极大地增强了我们对黑素细胞表型的理解,但协调跨独立研究和不同分析平台报告的众多特征仍然是一个挑战。目前用于分类黑素细胞基因特征的方法依赖于精确的基因重叠,并与未标准化的基线转录组进行比较。在这项研究中,我们旨在根据临床皮肤黑色素瘤标本中表达模式的相似性将已发表的基因特征分类为聚类。我们分析了来自六个基因表达库的近 800 个黑色素瘤样本,并开发了一种基因特征分类框架,该框架能够抵抗分析平台中基因识别的偏差以及基线标准的不一致性。使用 39 个经常引用的已发表基因特征,我们的分析揭示了与先前确定的表型相关的七个主要基因特征类:分化型、有丝分裂/MYC 型、AXL 型、无色素型、神经型、低代谢型和侵袭型。每个类别都与组成基因特征所代表的表型一致,并且我们的分类方法不依赖于特征之间的重叠基因。为了促进更广泛的应用,我们创建了 WIMMS(我的黑素细胞特征是什么,可在 https://wimms.tanlab.org/ 上获得),这是一个用户友好的网络应用程序。WIMMS 允许用户对任何基因特征进行分类,确定其与主要引用特征的关系及其在七个主要类别中的代表性。