Suppr超能文献

Effect of bottom bumpiness of vibrated closed container on granular dissipation behavior.

作者信息

Li Wenzhe, Zhang Kai, Sun Fugui, Chen Meng

机构信息

School of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an, China.

出版信息

Eur Phys J E Soft Matter. 2024 Jul 29;47(7):51. doi: 10.1140/epje/s10189-024-00443-6.

Abstract

The dissipation behavior of granular balls inside quasi-two-dimensional closed containers with different levels of bottom bumpiness under vibration is examined in this article using the discrete element method. The quasi-two-dimensional closed granular system used in this paper has dimensions of , and the diameters of the 279 filled granular balls are 4 mm. First, the dynamic behavior and damping effects of granular balls within a flat-bottomed closed container are explored across the range of relevant excitation parameters, identifying four high damping granular phases. Second, this study investigated the impact of the container's bottom surface bumpiness, convex height, and number of bumps on the dissipative behavior of internal granular balls. The findings reveal that a single 2 mm bump on the container's bottom surface maximally enhances the damping effect on the granular balls. Finally, by comparing the optimal damping behavior of granular balls inside a flat-bottomed container with that of a container featuring a single 2 mm bump at the bottom, this study revealed how the protruding bottom surface enhances the damping effect on the granular balls inside the container. This provides theoretical support for optimizing the performance of granular dampers in engineering practice by controlling the morphology of the cavity bottom surface.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验