Suppr超能文献

应用机器学习技术和传统回归模型预测活体肾捐献者的捐肾后肾功能。

Prediction of post-donation renal function using machine learning techniques and conventional regression models in living kidney donors.

机构信息

Division of Nephrology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.

Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, South Korea.

出版信息

J Nephrol. 2024 Jul;37(6):1679-1687. doi: 10.1007/s40620-024-02027-1. Epub 2024 Jul 29.

Abstract

BACKGROUND

Accurate prediction of renal function following kidney donation and careful selection of living donors are essential for living-kidney donation programs. We aimed to develop a prediction model for post-donation renal function following living kidney donation using machine learning.

METHODS

This retrospective cohort study was conducted with 823 living kidney donors between 2009 and 2020. The dataset was randomly split into training (80%) and test sets (20%). The main outcome was the post-donation estimated glomerular filtration rate (eGFR) 12 months after nephrectomy. We compared the performance of machine learning techniques, traditional regression models, and models from previous studies. The best-performing model was selected based on the mean absolute error (MAE) and root mean square error (RMSE).

RESULTS

The mean age of the participants was 45.2 ± 12.3 years, and 48.4% were males. The mean pre-donation and post-donation eGFRs were 101.3 ± 13.0 and 68.8 ± 12.7 mL/min/1.73 m, respectively. The XGBoost model with the eGFR, age, serum creatinine, 24-h urine creatinine, 24-h urine sodium, creatinine clearance, cystatin C, cystatin C-based eGFR, computed tomography volume of the remaining kidney/body weight, normalized GFR of the remaining kidney measured through a diethylenetriaminepentaacetic acid scan, and sex, showed the best performance with a mean absolute error of 6.23 and root mean square error of 8.06. An easy-to-use web application titled Kidney Donation with Nephrologic Intelligence (KDNI) was developed.

CONCLUSIONS

The prediction model using XGBoost accurately predicted the post-donation eGFR after living kidney donation. This model can be applied in clinical practice using KDNI, the developed web application.

摘要

背景

准确预测肾捐献后的肾功能并对活体供者进行精心选择对于活体肾捐献计划至关重要。我们旨在使用机器学习为活体肾捐献后肾功能的预测建立一个模型。

方法

这是一项回顾性队列研究,纳入了 2009 年至 2020 年间的 823 名活体肾捐献者。数据集被随机分为训练集(80%)和测试集(20%)。主要结局是肾切除术后 12 个月的捐肾后估算肾小球滤过率(eGFR)。我们比较了机器学习技术、传统回归模型和以前研究的模型的性能。选择表现最佳的模型基于平均绝对误差(MAE)和均方根误差(RMSE)。

结果

参与者的平均年龄为 45.2 ± 12.3 岁,48.4%为男性。平均术前和术后 eGFR 分别为 101.3 ± 13.0 和 68.8 ± 12.7 mL/min/1.73 m。具有 eGFR、年龄、血清肌酐、24 小时尿肌酐、24 小时尿钠、肌酐清除率、胱抑素 C、胱抑素 C 估算的肾小球滤过率、通过二乙三胺五乙酸扫描测量的剩余肾/体重的归一化肾小球滤过率、剩余肾的计算机断层扫描体积和性别等变量的 XGBoost 模型表现最佳,平均绝对误差为 6.23,均方根误差为 8.06。开发了一个名为肾捐献肾脏病学智能(KDNI)的易于使用的网络应用程序。

结论

使用 XGBoost 的预测模型准确预测了活体肾捐献后的捐肾后 eGFR。该模型可以通过 KDNI 即开发的网络应用程序在临床实践中应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验