Suppr超能文献

CatLearning:基于组蛋白标记的高精度基因表达预测

CatLearning: highly accurate gene expression prediction from histone mark.

机构信息

Beijing National Research Center for Information Science and Technology, Tsinghua University, FIT Building, Haidian District, Beijing 100084, China.

Liangzhu Laboratory, Zhejiang University, 1369 Wenyixi Road, Yuhang District, Hangzhou, Zhejiang, 311121, China.

出版信息

Brief Bioinform. 2024 Jul 25;25(5). doi: 10.1093/bib/bbae373.

Abstract

Histone modifications, known as histone marks, are pivotal in regulating gene expression within cells. The vast array of potential combinations of histone marks presents a considerable challenge in decoding the regulatory mechanisms solely through biological experimental approaches. To overcome this challenge, we have developed a method called CatLearning. It utilizes a modified convolutional neural network architecture with a specialized adaptation Residual Network to quantitatively interpret histone marks and predict gene expression. This architecture integrates long-range histone information up to 500Kb and learns chromatin interaction features without 3D information. By using only one histone mark, CatLearning achieves a high level of accuracy. Furthermore, CatLearning predicts gene expression by simulating changes in histone modifications at enhancers and throughout the genome. These findings help comprehend the architecture of histone marks and develop diagnostic and therapeutic targets for diseases with epigenetic changes.

摘要

组蛋白修饰,又称组蛋白标记,在调节细胞内基因表达方面起着关键作用。大量潜在的组蛋白标记组合给仅通过生物实验方法解码调控机制带来了巨大的挑战。为了克服这一挑战,我们开发了一种名为 CatLearning 的方法。它利用了一种经过修改的卷积神经网络架构,并结合了专门的自适应残差网络,用于定量解释组蛋白标记并预测基因表达。该架构集成了长达 500kb 的远程组蛋白信息,并且在不使用 3D 信息的情况下学习染色质相互作用特征。CatLearning 仅使用一个组蛋白标记就能达到很高的准确性。此外,CatLearning 通过模拟增强子和整个基因组中组蛋白修饰的变化来预测基因表达。这些发现有助于理解组蛋白标记的结构,并为具有表观遗传变化的疾病开发诊断和治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/555c/11285185/78d8e3861b00/bbae373f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验