Suppr超能文献

利用机器学习模型通过数字收集的数据鉴别神经发育状况:横断面问卷调查研究

Use of Machine Learning Models to Differentiate Neurodevelopment Conditions Through Digitally Collected Data: Cross-Sectional Questionnaire Study.

作者信息

Grazioli Silvia, Crippa Alessandro, Buo Noemi, Busti Ceccarelli Silvia, Molteni Massimo, Nobile Maria, Salandi Antonio, Trabattoni Sara, Caselli Gabriele, Colombo Paola

机构信息

Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy.

Department of Psychology, Sigmund Freud University, Milan, Italy.

出版信息

JMIR Form Res. 2024 Jul 29;8:e54577. doi: 10.2196/54577.

Abstract

BACKGROUND

Diagnosis of child and adolescent psychopathologies involves a multifaceted approach, integrating clinical observations, behavioral assessments, medical history, cognitive testing, and familial context information. Digital technologies, especially internet-based platforms for administering caregiver-rated questionnaires, are increasingly used in this field, particularly during the screening phase. The ascent of digital platforms for data collection has propelled advanced psychopathology classification methods such as supervised machine learning (ML) into the forefront of both research and clinical environments. This shift, recently called psycho-informatics, has been facilitated by gradually incorporating computational devices into clinical workflows. However, an actual integration between telemedicine and the ML approach has yet to be fulfilled.

OBJECTIVE

Under these premises, exploring the potential of ML applications for analyzing digitally collected data may have significant implications for supporting the clinical practice of diagnosing early psychopathology. The purpose of this study was, therefore, to exploit ML models for the classification of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) using internet-based parent-reported socio-anamnestic data, aiming at obtaining accurate predictive models for new help-seeking families.

METHODS

In this retrospective, single-center observational study, socio-anamnestic data were collected from 1688 children and adolescents referred for suspected neurodevelopmental conditions. The data included sociodemographic, clinical, environmental, and developmental factors, collected remotely through the first Italian internet-based screening tool for neurodevelopmental disorders, the Medea Information and Clinical Assessment On-Line (MedicalBIT). Random forest (RF), decision tree, and logistic regression models were developed and evaluated using classification accuracy, sensitivity, specificity, and importance of independent variables.

RESULTS

The RF model demonstrated robust accuracy, achieving 84% (95% CI 82-85; P<.001) for ADHD and 86% (95% CI 84-87; P<.001) for ASD classifications. Sensitivities were also high, with 93% for ADHD and 95% for ASD. In contrast, the DT and LR models exhibited lower accuracy (DT 74%, 95% CI 71-77; P<.001 for ADHD; DT 79%, 95% CI 77-82; P<.001 for ASD; LR 61%, 95% CI 57-64; P<.001 for ADHD; LR 63%, 95% CI 60-67; P<.001 for ASD) and sensitivities (DT: 82% for ADHD and 88% for ASD; LR: 62% for ADHD and 68% for ASD). The independent variables considered for classification differed in importance between the 2 models, reflecting the distinct characteristics of the 3 ML approaches.

CONCLUSIONS

This study highlights the potential of ML models, particularly RF, in enhancing the diagnostic process of child and adolescent psychopathology. Altogether, the current findings underscore the significance of leveraging digital platforms and computational techniques in the diagnostic process. While interpretability remains crucial, the developed approach might provide valuable screening tools for clinicians, highlighting the significance of embedding computational techniques in the diagnostic process.

摘要

背景

儿童和青少年精神病理学的诊断涉及多方面的方法,包括临床观察、行为评估、病史、认知测试以及家庭背景信息。数字技术,尤其是用于管理由照顾者评定问卷的基于互联网的平台,在该领域的使用越来越多,特别是在筛查阶段。用于数据收集的数字平台的兴起,推动了诸如监督机器学习(ML)等先进的精神病理学分类方法进入研究和临床环境的前沿。这种转变,最近被称为心理信息学,通过逐渐将计算设备纳入临床工作流程而得到促进。然而,远程医疗与ML方法之间的实际整合尚未实现。

目的

在这些前提下,探索ML应用程序分析数字收集数据的潜力,可能对支持早期精神病理学诊断的临床实践具有重要意义。因此,本研究的目的是利用ML模型,使用基于互联网的家长报告的社会回忆性数据对注意力缺陷多动障碍(ADHD)和自闭症谱系障碍(ASD)进行分类,旨在为新的求助家庭获得准确的预测模型。

方法

在这项回顾性单中心观察性研究中,从1688名因疑似神经发育状况而转诊的儿童和青少年中收集社会回忆性数据。数据包括社会人口统计学、临床、环境和发育因素,通过意大利首个基于互联网的神经发育障碍筛查工具Medea信息和临床在线评估(MedicalBIT)远程收集。使用分类准确性、敏感性、特异性和自变量的重要性,开发并评估了随机森林(RF)、决策树和逻辑回归模型。

结果

RF模型显示出强大的准确性,ADHD分类的准确率为84%(95%CI 82-85;P<.001),ASD分类的准确率为86%(95%CI 84-87;P<.001)。敏感性也很高,ADHD为93%,ASD为95%。相比之下,DT和LR模型的准确性较低(ADHD的DT为74%,95%CI 71-77;P<.001;ASD的DT为79%,95%CI 77-82;P<.001;ADHD的LR为61%,95%CI 57-64;P<.001;ASD的LR为63%,95%CI 60-67;P<.001)和敏感性(DT:ADHD为82%,ASD为88%;LR:ADHD为62%,ASD为68%)。两种模型用于分类的自变量在重要性方面存在差异,反映了三种ML方法的不同特征。

结论

本研究强调了ML模型,特别是RF,在增强儿童和青少年精神病理学诊断过程中的潜力。总体而言,目前的研究结果强调了在诊断过程中利用数字平台和计算技术的重要性。虽然可解释性仍然至关重要,但所开发的方法可能为临床医生提供有价值的筛查工具,突出了将计算技术嵌入诊断过程的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ea0/11319882/456369dc4b9a/formative_v8i1e54577_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验