Suppr超能文献

基于自闭症最佳诊断工具的数据驱动机器学习方法,以区分自闭症谱系障碍和注意缺陷/多动障碍。

A data driven machine learning approach to differentiate between autism spectrum disorder and attention-deficit/hyperactivity disorder based on the best-practice diagnostic instruments for autism.

机构信息

Department of Child and Adolescent Psychiatry and Psychotherapy, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

Institute and Policlinic of Occupational and Social Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.

出版信息

Sci Rep. 2022 Nov 5;12(1):18744. doi: 10.1038/s41598-022-21719-x.

Abstract

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are two frequently co-occurring neurodevelopmental conditions that share certain symptomatology, including social difficulties. This presents practitioners with challenging (differential) diagnostic considerations, particularly in clinically more complex cases with co-occurring ASD and ADHD. Therefore, the primary aim of the current study was to apply a data-driven machine learning approach (support vector machine) to determine whether and which items from the best-practice clinical instruments for diagnosing ASD (ADOS, ADI-R) would best differentiate between four groups of individuals referred to specialized ASD clinics (i.e., ASD, ADHD, ASD + ADHD, ND = no diagnosis). We found that a subset of five features from both ADOS (clinical observation) and ADI-R (parental interview) reliably differentiated between ASD groups (ASD & ASD + ADHD) and non-ASD groups (ADHD & ND), and these features corresponded to the social-communication but also restrictive and repetitive behavior domains. In conclusion, the results of the current study support the idea that detecting ASD in individuals with suspected signs of the diagnosis, including those with co-occurring ADHD, is possible with considerably fewer items relative to the original ADOS/2 and ADI-R algorithms (i.e., 92% item reduction) while preserving relatively high diagnostic accuracy. Clinical implications and study limitations are discussed.

摘要

自闭症谱系障碍(ASD)和注意缺陷多动障碍(ADHD)是两种经常同时发生的神经发育障碍,它们具有某些共同的症状,包括社交困难。这给从业者带来了具有挑战性的(鉴别)诊断考虑,特别是在同时患有 ASD 和 ADHD 的临床情况更复杂的情况下。因此,本研究的主要目的是应用基于数据的机器学习方法(支持向量机)来确定最佳临床诊断 ASD 工具(ADOS、ADI-R)中的哪些项目可以最好地区分四个被转诊到专门 ASD 诊所的个体群体(即 ASD、ADHD、ASD+ADHD、ND=无诊断)。我们发现,ADOS(临床观察)和 ADI-R(家长访谈)中的五个特征子集可靠地区分了 ASD 组(ASD 和 ASD+ADHD)和非 ASD 组(ADHD 和 ND),这些特征与社交沟通以及受限和重复行为领域相对应。总之,本研究的结果支持这样一种观点,即在存在疑似诊断迹象的个体中,包括那些同时患有 ADHD 的个体中,通过相对较少的项目(相对于原始 ADOS/2 和 ADI-R 算法减少了 92%)来检测 ASD 是可能的,同时保持相对较高的诊断准确性。讨论了临床意义和研究限制。

相似文献

5
[ADI-R and ADOS and the differential diagnosis of autism spectrum disorders: Interests, limits and openings].
Encephale. 2019 Nov;45(5):441-448. doi: 10.1016/j.encep.2019.07.002. Epub 2019 Sep 5.
7
ASD symptoms in adults with ADHD: a preliminary study using the ADOS-2.
Eur Arch Psychiatry Clin Neurosci. 2022 Mar;272(2):217-232. doi: 10.1007/s00406-021-01250-2. Epub 2021 Mar 22.
8
Co-occurring attention-deficit/hyperactivity disorder and anxiety disorders differentially affect males and females with autism.
Clin Neuropsychol. 2022 Jul;36(5):1069-1093. doi: 10.1080/13854046.2021.1942554. Epub 2021 Jul 27.
9
Impact of ADHD symptoms on autism spectrum disorder symptom severity.
Res Dev Disabil. 2013 Oct;34(10):3545-52. doi: 10.1016/j.ridd.2013.07.028. Epub 2013 Aug 22.
10

本文引用的文献

1
rs-fMRI and machine learning for ASD diagnosis: a systematic review and meta-analysis.
Sci Rep. 2022 Apr 11;12(1):6030. doi: 10.1038/s41598-022-09821-6.
3
Is the Combination of ADOS and ADI-R Necessary to Classify ASD? Rethinking the "Gold Standard" in Diagnosing ASD.
Front Psychiatry. 2021 Aug 24;12:727308. doi: 10.3389/fpsyt.2021.727308. eCollection 2021.
4
Differentiation of autism spectrum disorder and mood or anxiety disorder.
Autism. 2022 Jul;26(5):1056-1069. doi: 10.1177/13623613211039673. Epub 2021 Aug 18.
6
Systematic Review and Meta-Analysis of the Clinical Utility of the ADOS-2 and the ADI-R in Diagnosing Autism Spectrum Disorders in Children.
J Autism Dev Disord. 2021 Nov;51(11):4101-4114. doi: 10.1007/s10803-020-04839-z. Epub 2021 Jan 21.
8
Rethinking "gold standards" and "best practices" in the assessment of autism.
Appl Neuropsychol Child. 2022 Jul-Sep;11(3):529-540. doi: 10.1080/21622965.2020.1809414. Epub 2020 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验