Suppr超能文献

功能随机森林方法揭示 ADHD 和 ASD 中执行功能的异质性。

Heterogeneity of executive function revealed by a functional random forest approach across ADHD and ASD.

机构信息

Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97221, USA.

Division of Developmental/Behavioral Pediatrics and Psychology; Rainbow Babies & Children's Hospital, 11100 Euclid Ave., Cleveland, OH 44106, USA.

出版信息

Neuroimage Clin. 2020;26:102245. doi: 10.1016/j.nicl.2020.102245. Epub 2020 Mar 16.

Abstract

BACKGROUND

Those with autism spectrum disorder (ASD) and/or attention-deficit-hyperactivity disorder (ADHD) exhibit symptoms of hyperactivity and inattention, causing significant hardships for families and society. A potential mechanism involved in these conditions is atypical executive function (EF). Inconsistent findings highlight that EF features may be shared or distinct across ADHD and ASD. With ADHD and ASD each also being heterogeneous, we hypothesized that there may be nested subgroups across disorders with shared or unique underlying mechanisms.

METHODS

Participants (N = 130) included adolescents aged 7-16 with ASD (n = 64) and ADHD (n = 66). Typically developing (TD) participants (n = 28) were included for a comparative secondary sub-group analysis. Parents completed the K-SADS and youth completed an extended battery of executive and other cognitive measures. A two stage hybrid machine learning tool called functional random forest (FRF) was applied as a classification approach and then subsequently to subgroup identification. We input 43 EF variables to the classification step, a supervised random forest procedure in which the features estimated either hyperactive or inattentive ADHD symptoms per model. The FRF then produced proximity matrices and identified optimal subgroups via the infomap algorithm (a type of community detection derived from graph theory). Resting state functional connectivity MRI (rs-fMRI) was used to evaluate the neurobiological validity of the resulting subgroups.

RESULTS

Both hyperactive (Mean absolute error (MAE) = 0.72, Null model MAE = 0.8826, (t(58) = -4.9, p < .001) and inattentive (MAE = 0.7, Null model MAE = 0.85, t(58) = -4.4, p < .001) symptoms were predicted better than chance by the EF features selected. Subgroup identification was robust (Hyperactive: Q = 0.2356, p < .001; Inattentive: Q = 0.2350, p < .001). Two subgroups representing severe and mild symptomology were identified for each symptom domain. Neuroimaging data revealed that the subgroups and TD participants significantly differed within and between multiple functional brain networks, but no consistent "severity" patterns of over or under connectivity were observed between subgroups and TD.

CONCLUSION

The FRF estimated hyperactive/inattentive symptoms and identified 2 distinct subgroups per model, revealing distinct neurocognitive profiles of Severe and Mild EF performance per model. Differences in functional connectivity between subgroups did not appear to follow a severity pattern based on symptom expression, suggesting a more complex mechanistic interaction that cannot be attributed to symptom presentation alone.

摘要

背景

自闭症谱系障碍(ASD)和/或注意力缺陷多动障碍(ADHD)患者表现出多动和注意力不集中的症状,给家庭和社会带来了巨大的困难。潜在的涉及这些疾病的机制是典型的执行功能(EF)异常。不一致的研究结果表明,ADHD 和 ASD 之间的 EF 特征可能既有共同之处,也有不同之处。鉴于 ADHD 和 ASD 均具有异质性,我们假设可能存在跨疾病的嵌套亚组,这些亚组具有共同或独特的潜在机制。

方法

参与者(N=130)包括年龄在 7-16 岁的 ASD(n=64)和 ADHD(n=66)青少年。还纳入了 28 名具有典型发育(TD)的参与者作为次要亚组的比较分析。父母完成 K-SADS,年轻人完成扩展的执行功能和其他认知测试。使用一种称为功能随机森林(FRF)的两级混合机器学习工具作为分类方法,然后用于识别亚组。我们将 43 个 EF 变量输入分类步骤,这是一种监督随机森林程序,其中每个模型都可以估计多动或注意力不集中的 ADHD 症状。FRF 随后生成接近矩阵,并通过 infomap 算法(一种源自图论的社区检测类型)识别最佳亚组。静息态功能磁共振成像(rs-fMRI)用于评估所得亚组的神经生物学有效性。

结果

多动(平均绝对误差(MAE)=0.72,Null 模型 MAE=0.8826,t(58)=-4.9,p<.001)和注意力不集中(MAE=0.7,Null 模型 MAE=0.85,t(58)=-4.4,p<.001)症状的预测准确性均高于随机水平,这是由所选 EF 特征决定的。亚组识别结果稳健(多动:Q=0.2356,p<.001;注意力不集中:Q=0.2350,p<.001)。针对每个症状域,确定了代表严重和轻度症状的两个亚组。神经影像学数据显示,在多个功能大脑网络中,亚组和 TD 参与者在内部和之间均存在显著差异,但在亚组和 TD 参与者之间未观察到一致的连接过度或不足的“严重程度”模式。

结论

FRF 可以估计多动/注意力不集中的症状,并为每个模型确定 2 个不同的亚组,从而揭示了每个模型中严重和轻度 EF 表现的不同神经认知特征。亚组之间的功能连接差异似乎没有遵循基于症状表现的严重程度模式,这表明存在更复杂的机制相互作用,不能仅归因于症状表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/404f/7109457/0eaa6bc77bc6/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验