Suppr超能文献

共价过渡金属硼硅化物:用于水氧化电催化的熔盐反应途径

Covalent Transition Metal Borosilicides: Reaction Pathways in Molten Salts for Water Oxidation Electrocatalysis.

作者信息

Janisch Daniel, Igoa Saldaña Fernando, De Rolland Dalon Edouard, V M Inocêncio Carlos, Song Yang, Autran Pierre-Olivier, Miche Antoine, Casale Sandra, Portehault David

机构信息

Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Sorbonne Université, CNRS, 4 place Jussieu, F-75005 Paris, France.

European Synchrotron Radiation Facility (ESRF), 71 avenue des Martyrs, 38043 Grenoble Cedex 9, France.

出版信息

J Am Chem Soc. 2024 Aug 7;146(31):21824-21836. doi: 10.1021/jacs.4c06074. Epub 2024 Jul 29.

Abstract

The properties of transition metal borides and silicides are intimately linked to the covalent character of the chemical bonds within their crystal structures. Bringing boron and silicon together within metal borosilicides can then engender different competing covalent networks and complex charge distributions. This situation results in unique structures and atomic environments, which can impact charge transport and catalytic properties. Metal borosilicides, however, hold the status of unusual exotic species, difficult to synthesize and with poor knowledge of their properties. Our strategy consists of developing a redox pathway to synthesize transition metal borosilicides in inorganic molten salts as high-temperature solvents. By studying the formation of NiSiB, CoSiB, FeSiB, and MnSiB with in situ X-ray diffraction, we highlight how new reaction routes, maintaining covalent structural building blocks, draw a general scheme of their formation. This pathway is driven by the covalence of the chemical bonds within the boron coordination framework. Next, we demonstrate high efficiency for water oxidation electrocatalysis, especially for NiSiB. We ascribe the strongly increased resistance to corrosion, high stability, and electrocatalytic activity of the NiSiB-derived material to three factors: (1) the two entangled boron and silicon covalent networks; (2) the ability to codope with boron and silicon an in situ generated catalytic layer; and (3) a rare electron enrichment of the transition metal by back-donation from boron atoms, previously unknown within this compound family. With this work, we then unveil a new chemical dimension for Earth-abundant water oxidation electrocatalysts by bringing to light a new family of materials.

摘要

过渡金属硼化物和硅化物的性质与其晶体结构中化学键的共价特性密切相关。在金属硼硅化物中同时引入硼和硅会产生不同的相互竞争的共价网络和复杂的电荷分布。这种情况导致了独特的结构和原子环境,进而可能影响电荷传输和催化性能。然而,金属硼硅化物属于特殊的外来物种,难以合成且对其性质了解甚少。我们的策略是开发一种氧化还原途径,在作为高温溶剂的无机熔盐中合成过渡金属硼硅化物。通过原位X射线衍射研究NiSiB、CoSiB、FeSiB和MnSiB的形成过程,我们突出了新的反应路径如何在保持共价结构构建块的同时,勾勒出它们形成的一般方案。这一途径由硼配位框架内化学键的共价性驱动。接下来,我们展示了水氧化电催化的高效性,特别是对于NiSiB。我们将NiSiB衍生材料的抗腐蚀性大幅提高、高稳定性和电催化活性归因于三个因素:(1)两个相互缠绕的硼和硅共价网络;(2)硼和硅对原位生成的催化层进行共掺杂的能力;(3)硼原子通过反向给电子使过渡金属发生罕见的电子富集,这在该化合物家族中此前尚不为人知。通过这项工作,我们通过揭示一类新型材料,为储量丰富的水氧化电催化剂开辟了一个新的化学维度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验