Qin Yushu, Shao Zhenhan, Hong Taizhou, Wang Yuanhong, Jiang Min, Peng Xinhua
CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, <a href="https://ror.org/04c4dkn09">University of Science and Technology of China</a>, Hefei 230026, China; CAS Center for Excellence in Quantum Information and Quantum Physics, <a href="https://ror.org/04c4dkn09">University of Science and Technology of China</a>, Hefei 230026, China and Hefei National Laboratory, <a href="https://ror.org/04c4dkn09">University of Science and Technology of China</a>, Hefei 230088, China.
Phys Rev Lett. 2024 Jul 12;133(2):023202. doi: 10.1103/PhysRevLett.133.023202.
Precision measurements of anomalous spin-dependent interactions are often hindered by magnetic noise and other magnetic systematic effects. Atomic comagnetometers use the distinct spin precession of two species and have emerged as important tools for effectively mitigating the magnetic noise. Nevertheless, the operation of existing comagnetometers is limited to very low-frequency noise commonly below 1 Hz. Here, we report a new type of atomic comagnetometer based on a magnetic noise self-compensation mechanism originating from the destructive interference between alkali-metal and noble-gas spins. Our comagnetometer employing K-^{3}He system remarkably suppresses magnetic noise exceeding 2 orders of magnitude at higher frequencies up to 160 Hz. Moreover, we discover that the capability of our comagnetometer to suppress magnetic noise is spatially dependent on the orientation of the noise and can be conveniently controlled by adjusting the applied bias magnetic field. Our findings open up new possibilities for precision measurements, including enhancing the search sensitivity of spin-dark matter particles interactions into unexplored parameter space.
反常自旋相关相互作用的精确测量常常受到磁噪声和其他磁系统效应的阻碍。原子共磁强计利用两种原子独特的自旋进动,已成为有效减轻磁噪声的重要工具。然而,现有共磁强计的运行仅限于通常低于1赫兹的极低频噪声。在此,我们报告一种新型原子共磁强计,其基于碱金属和稀有气体自旋之间相消干涉产生的磁噪声自补偿机制。我们采用K-³He系统的共磁强计在高达160赫兹的较高频率下能显著抑制超过2个数量级的磁噪声。此外,我们发现我们的共磁强计抑制磁噪声的能力在空间上取决于噪声的方向,并且可以通过调整外加偏置磁场方便地进行控制。我们的研究结果为精确测量开辟了新的可能性,包括提高对自旋暗物质粒子相互作用进入未探索参数空间的搜索灵敏度。