Liu Yaxin, Zhu Bingbing, Jiang Shicheng, Huang Shenyang, Luo Mingyan, Zhang Sheng, Yan Hugen, Zhang Yuanbo, Lu Ruifeng, Tao Zhensheng
State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Department of Physics, <a href="https://ror.org/013q1eq08">Fudan University</a>, Shanghai 200433, People's Republic of China.
State Key Laboratory of Precision Spectroscopy, <a href="https://ror.org/02n96ep67">East China Normal University</a>, Shanghai 200062, People's Republic of China.
Phys Rev Lett. 2024 Jul 12;133(2):026901. doi: 10.1103/PhysRevLett.133.026901.
Understanding dephasing mechanisms of strong-field-driven excitons in condensed matter is essential for their applications in quantum-state manipulation and ultrafast optical modulations. However, experimental access to exciton dephasing under strong-field conditions is challenging. In this study, using time- and spectrum-resolved quantum-path interferometry, we investigate the dephasing mechanisms of terahertz-driven excitonic Autler-Townes doublets in MoS_{2}. Our results reveal a dramatic increase in the dephasing rate beyond a threshold field strength, indicating exciton dissociation as the primary dephasing mechanism. Furthermore, we demonstrate nonperturbative high-order sideband generation in a regime where the driving fields are insufficient to dissociate excitons.
了解凝聚态物质中强场驱动激子的退相机制对于其在量子态操纵和超快光调制中的应用至关重要。然而,在强场条件下对激子退相进行实验研究具有挑战性。在本研究中,我们使用时间和光谱分辨的量子路径干涉测量法,研究了太赫兹驱动的MoS₂ 中激子自电离-汤斯双峰的退相机制。我们的结果表明,超过阈值场强时退相速率急剧增加,这表明激子解离是主要的退相机制。此外,我们还证明了在驱动场不足以使激子解离的情况下会产生非微扰高阶边带。