Zhang Jicai, Liu Xiulan, Tran Tien-Dat, Xu Wenqi, Yu Wenhao, Zhang Chong, Wang Ziwen, Geng Lei, Zhang Jianing, Peng Liang-You, Kruchinin Stanislav Yu, Luu Tran Trung
Department of Physics, The University of Hong Kong, Hong Kong SAR, China.
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
Nat Commun. 2025 Aug 18;16(1):7660. doi: 10.1038/s41467-025-62746-2.
The ability to control electron motion with light fields represents a transformative frontier in modern physics, enabling dynamic manipulation of material properties at ultrafast timescales. Yet, the complex interplay between light and excited carriers-via mechanisms such as the AC Stark effect, field-induced coupling of excitonic and Bloch states, the dynamical Franz-Keldysh effect, and the ponderomotive effect-continues to challenge our understanding of quantum systems driven far from equilibrium. Here, we establish non-collinear harmonic spectroscopy as a powerful technique for initiating, tracking, and steering femtosecond carrier dynamics across the energy landscape in the dielectric SiO crystal. Combining rigorous numerical simulations with analytical theory, we identify the main mechanisms responsible for the crossover of different strong-field phenomena, which leads to the delay-dependent energy shift of excitonic and Bloch states. This control over the electronic and excitonic states opens new opportunities for tailoring carrier dynamics in quantum materials, paving the way for next-generation optoelectronic and nanophotonic technologies.
利用光场控制电子运动的能力代表了现代物理学中一个变革性的前沿领域,它能够在超快时间尺度上对材料特性进行动态操纵。然而,光与激发载流子之间复杂的相互作用——通过诸如交流斯塔克效应、场致激子态与布洛赫态耦合、动态弗朗兹-凯尔迪什效应以及有质动力效应等机制——仍然挑战着我们对远离平衡态驱动的量子系统的理解。在此,我们将非共线谐波光谱法确立为一种强大的技术,用于在介电SiO晶体的能量图景中启动、跟踪和操控飞秒载流子动力学。通过将严格的数值模拟与解析理论相结合,我们确定了导致不同强场现象交叉的主要机制,这会导致激子态和布洛赫态的延迟依赖能量移位。对电子态和激子态的这种控制为定制量子材料中的载流子动力学开辟了新机遇,为下一代光电子和纳米光子技术铺平了道路。