Suppr超能文献

定义胜率的估计量:将真实效应与删失分开。

Defining estimand for the win ratio: Separate the true effect from censoring.

机构信息

Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Clin Trials. 2024 Oct;21(5):584-594. doi: 10.1177/17407745241259356. Epub 2024 Jul 30.

Abstract

The win ratio has been increasingly used in trials with hierarchical composite endpoints. While the outcomes involved and the rule for their comparisons vary with the application, there is invariably little attention to the estimand of the resulting statistic, causing difficulties in interpretation and cross-trial comparison. We make the case for articulating the estimand as a first step to win ratio analysis and establish that the root cause for its elusiveness is its intrinsic dependency on the time frame of comparison, which, if left unspecified, is set haphazardly by trial-specific censoring. From the statistical literature, we summarize two general approaches to overcome this uncertainty-a nonparametric one that pre-specifies the time frame for all comparisons, and a semiparametric one that posits a constant win ratio across all times-each with publicly available software and real examples. Finally, we discuss unsolved challenges, such as estimand construction and inference in the presence of intercurrent events.

摘要

赢率在具有层次复合终点的试验中越来越多地被使用。虽然涉及的结果和比较它们的规则因应用而异,但对于由此产生的统计量的估计量几乎没有关注,导致解释和跨试验比较困难。我们认为将估计量作为赢率分析的第一步是有必要的,并确定其难以捉摸的根本原因是其内在依赖于比较的时间框架,如果不指定,就会被试验特有的删失随机设置。从统计学文献中,我们总结了两种克服这种不确定性的一般方法——一种是预先指定所有比较时间框架的非参数方法,另一种是假定所有时间赢率不变的半参数方法——每种方法都有可用的软件和真实示例。最后,我们讨论了一些未解决的挑战,例如在存在并发事件时的估计量构建和推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/094a/11528857/0f5d63f69978/10.1177_17407745241259356-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验