Tang Yueh, Wang Chao-Hung, Mitra Prasenjit, Pai Tun-Wen
Department of Computer Science and Information Engineering, National Taipei University of Technology, 106344 Taipei, Taiwan.
Heart Failure Research Center, Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, 204201 Keelung, Taiwan.
Rev Cardiovasc Med. 2024 May 20;25(5):179. doi: 10.31083/j.rcm2505179. eCollection 2024 May.
In the post-coronavirus disease 2019 (COVID-19) era, remote diagnosis and precision preventive medicine have emerged as pivotal clinical medicine applications. This study aims to develop a digital health-monitoring tool that utilizes electronic medical records (EMRs) as the foundation for performing a non-random correlation analysis among different comorbidity patterns for heart failure (HF).
Novel similarity indices, including proportional Jaccard index (PJI), multiplication of the odds ratio proportional Jaccard index (OPJI), and alpha proportional Jaccard index (APJI), provide a fundamental framework for constructing machine learning models to predict the risk conditions associated with HF.
Our models were constructed for different age groups and sexes and yielded accurate predictions of high-risk HF across demographics. The results indicated that the optimal prediction model achieved a notable accuracy of 82.1% and an area under the curve (AUC) of 0.878.
Our noninvasive HF risk prediction system is based on historical EMRs and provides a practical approach. The proposed indices provided simple and straightforward comparative indicators of comorbidity pattern matching within individual EMRs. All source codes developed for our noninvasive prediction models can be retrieved from GitHub.
在2019冠状病毒病(COVID-19)后的时代,远程诊断和精准预防医学已成为关键的临床医学应用。本研究旨在开发一种数字健康监测工具,该工具以电子病历(EMR)为基础,对心力衰竭(HF)的不同合并症模式进行非随机相关性分析。
新型相似性指数,包括比例杰卡德指数(PJI)、优势比比例杰卡德指数(OPJI)和α比例杰卡德指数(APJI),为构建机器学习模型以预测与HF相关的风险状况提供了基本框架。
我们针对不同年龄组和性别构建了模型,并在不同人群中对高危HF进行了准确预测。结果表明,最佳预测模型的准确率达到了显著的82.1%,曲线下面积(AUC)为0.878。
我们的无创HF风险预测系统基于历史EMR,提供了一种实用方法。所提出的指数为个体EMR内合并症模式匹配提供了简单直接的比较指标。为我们的无创预测模型开发的所有源代码均可从GitHub上获取。