Abu-Serie Marwa M, Barakat Assem, Ramadan Sherif, Habashy Noha Hassan
Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt.
Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
Front Pharmacol. 2024 Jul 15;15:1388038. doi: 10.3389/fphar.2024.1388038. eCollection 2024.
Metastatic hepatocellular carcinoma (HC) is a serious health concern. The stemness of cancer stem cells (CSCs) is a key driver for HC tumorigenesis, apoptotic resistance, and metastasis, and functional mitochondria are critical for its maintenance. Cuproptosis is Cu-dependent non-apoptotic pathway (mitochondrial dysfunction) via inactivating mitochondrial enzymes (pyruvate dehydrogenase "PDH" and succinate dehydrogenase "SDH"). To effectively treat metastatic HC, it is necessary to induce selective cuproptosis (for halting cancer stemness genes) with selective oxidative imbalance (for increasing cell susceptibility to cuproptosis and inducing non-CSCs death). Herein, two types of Cu oxide nanoparticles (CuO "C(I + II)" NPs and CuO "C(I)" NPs) were used in combination with diethyldithiocarbamate (DD, an aldehyde dehydrogenase "ALDH" inhibitor) for comparative anti-HC investigation. DC(I + II) NPs exhibited higher cytotoxicity, mitochondrial membrane potential, and anti-migration impact than DC(I) NPs in the treated human HC cells (HepG2 and/or Huh7). Moreover, DC(I + II) NPs were more effective than DC(I) NPs in the treatment of HC mouse groups. This was mediated via higher selective accumulation of DC(I + II) NPs in only tumor tissues and oxidant activity, causing stronger selective inhibition of mitochondrial enzymes (PDH, SDH, and ALDH2) than DC(I)NPs. This effect resulted in more suppression of tumor and metastasis markers as well as stemness gene expressions in DC(I + II) NPs-treated HC mice. In addition, both nanocomplexes normalized liver function and hematological parameters. The computational analysis found that DC(I + II) showed higher binding affinity to most of the tested enzymes. Accordingly, DC(I + II) NPs represent a highly effective therapeutic formulation compared to DC(I) NPs for metastatic HC.
转移性肝细胞癌(HC)是一个严重的健康问题。癌症干细胞(CSC)的干性是HC肿瘤发生、凋亡抗性和转移的关键驱动因素,而功能性线粒体对其维持至关重要。铜死亡是一种依赖铜的非凋亡途径(线粒体功能障碍),通过使线粒体酶(丙酮酸脱氢酶“PDH”和琥珀酸脱氢酶“SDH”)失活来实现。为了有效治疗转移性HC,有必要诱导选择性铜死亡(以阻断癌症干细胞基因)并产生选择性氧化失衡(以增加细胞对铜死亡的敏感性并诱导非CSC死亡)。在此,两种类型的氧化铜纳米颗粒(CuO“C(I + II)”NP和CuO“C(I)”NP)与二乙基二硫代氨基甲酸盐(DD,一种醛脱氢酶“ALDH”抑制剂)联合用于比较抗HC研究。在处理过的人HC细胞(HepG2和/或Huh7)中,DC(I + II)NP比DC(I)NP表现出更高的细胞毒性、线粒体膜电位和抗迁移作用。此外,DC(I + II)NP在治疗HC小鼠组方面比DC(I)NP更有效。这是通过DC(I + II)NP仅在肿瘤组织中的更高选择性积累和氧化活性介导的,导致比DC(I)NP更强地选择性抑制线粒体酶(PDH、SDH和ALDH2)。这种作用导致在DC(I + II)NP处理的HC小鼠中肿瘤和转移标志物以及干性基因表达受到更多抑制。此外,两种纳米复合物均使肝功能和血液学参数恢复正常。计算分析发现,DC(I + II)对大多数测试酶表现出更高的结合亲和力。因此,与DC(I)NP相比,DC(I + II)NP是一种用于转移性HC的高效治疗制剂。
Pharmaceutics. 2023-5-23
Biomolecules. 2023-4-18
J Exp Clin Cancer Res. 2022-9-12
Front Pharmacol. 2022-6-28
Signal Transduct Target Ther. 2022-5-13