Suppr超能文献

刀具几何形状对梯度纳米晶CoCrNi中熵合金材料去除的影响。

Effects of cutting tool geometry on material removal of a gradient nanograined CoCrNi medium entropy alloy.

作者信息

Lu Yu-Sheng, Hung Yu-Xuan, Bui Thi-Xuyen, Fang Te-Hua

机构信息

Department of Mechanical Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan.

University of Technology and Education - The University of Danang, Danang, Vietnam.

出版信息

Beilstein J Nanotechnol. 2024 Jul 23;15:925-940. doi: 10.3762/bjnano.15.76. eCollection 2024.

Abstract

CoCrNi medium-entropy alloys (MEAs) have attracted extensive attention and research because of their superior mechanical properties, such as higher ductility, strength, and toughness. This study uses molecular dynamics (MD) simulations to investigate the cutting behavior of a gradient nanograined (GNG) CoCrNi MEA. Moreover, it explores the influence of relative tool sharpness and rake angle on the cutting process. The results show that an increase in the average grain size of the GNG samples leads to a decrease in the average resultant cutting force, as predicted by the Hall-Petch relationship. The deformation behavior shows that grain boundaries are crucial in inhibiting the propagation of strain and stress. As the average grain size of the GNG sample increases, the range of shear strain distribution and average von Mises stress decreases. Moreover, the cutting chips become thinner and longer. The subsurface damage is limited to a shallow layer at the surface. Since thermal energy is generated in the high grain boundary density, the temperature of the contact zone between the substrate and the cutting tool increases as the GNG size decreases. The cutting chips removed from the GNG CoCrNi MEA substrates will transform into a mixed structure of face-centered cubic and hexagonally close-packed phases. The sliding and twisting of grain boundaries and the merging of grains are essential mechanisms for polycrystalline deformation. Regarding the cutting parameters, the average resultant force, the material accumulation, and the chip volume increase significantly with the increase in cutting depth. In contrast to sharp tools, which mainly use shear deformation, blunt tools remove material by plowing, and the cutting force increases with the increase in cutting-edge radius and negative rake angle.

摘要

CoCrNi中熵合金(MEA)因其优异的力学性能,如更高的延展性、强度和韧性,而受到广泛关注和研究。本研究采用分子动力学(MD)模拟来研究梯度纳米晶(GNG)CoCrNi MEA的切削行为。此外,还探讨了刀具相对锋利度和前角对切削过程的影响。结果表明,如霍尔-佩奇关系所预测的那样,GNG样品平均晶粒尺寸的增加会导致平均切削合力的降低。变形行为表明,晶界在抑制应变和应力的传播方面至关重要。随着GNG样品平均晶粒尺寸的增加,剪切应变分布范围和平均冯·米塞斯应力减小。此外,切屑变得更薄更长。亚表面损伤仅限于表面的浅层。由于在高晶界密度区域会产生热能,随着GNG尺寸减小,基体与切削刀具之间接触区的温度会升高。从GNG CoCrNi MEA基体上切除的切屑将转变为面心立方和六方密排相的混合结构。晶界的滑动和扭转以及晶粒的合并是多晶变形的基本机制。关于切削参数,平均切削合力、材料堆积和切屑体积随着切削深度的增加而显著增加。与主要通过剪切变形的锋利刀具不同,钝刀具通过犁削去除材料,切削力随着切削刃半径和负前角的增加而增大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c0b/11285073/486c3f462e8b/Beilstein_J_Nanotechnol-15-925-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验