Suppr超能文献

MAD图:一种用于可视化和表征光谱计算机断层扫描中组织能量依赖性衰减的方法。

MADplots: A methodology for visualizing and characterizing energy-dependent attenuation of tissues in spectral computed tomography.

作者信息

Lewis Matthew A, Soesbe Todd C, Duan Xinhui, Goshen Liran, Yagil Yoad, Gotman Shlomo, Lenkinski Robert E

机构信息

Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Philips Healthcare, Israel.

出版信息

Res Diagn Interv Imaging. 2022 Aug 3;2:100011. doi: 10.1016/j.redii.2022.100011. eCollection 2022 Jun.

Abstract

RATIONALE AND OBJECTIVES

A method for visualizing and analyzing the complete information contained in spectral CT scans using two-dimensional histograms (i.e. Material Attenuation Decomposition plots - MADplots) of the water-photoelectric attenuation versus water-scatter attenuation at the cohort (combination of multiple studies across patients), examination, series, slice, and organ/ROI levels is described.

MATERIALS AND METHODS

The appearance of a MADplot with several standard biological materials was predicted using ideal material properties available from NIST and the ICRU to generate a map for this non-spatial data space. Software tools were developed to generate MADplots as new DICOM series that facilitate spectral analysis. Illustrative examples were selected from an IRB-approved, retrospective cohort of Spectral Basis Images (SBIs) scanned using a pre-release, dual-layer detector spectral CT.

RESULTS

By combining all of the voxels for contrast and non-contrast studies, the predicted appearance of the MADplot was confirmed. Locations of several kinds of tissue, the shape of the tissue distributions in normal lung, and the variations in the manner in which organ-specific MADplots change with pathology are demonstrated for the presence of fat in both the liver and pancreas highlighting the potential use for identifying pathologies on spectral CT images.

CONCLUSIONS

The examples of MADplots shown at cohort (combined studies), examination, series, slice, organ, and ROI levels illustrate their potential utility in analyzing and displaying spectral CT data. Future studies are directed at developing MADplot based organ segmentation and the automated detection and display of organ based pathologies.

摘要

原理与目的

描述了一种利用二维直方图(即物质衰减分解图 - MAD图)在队列(跨患者的多项研究组合)、检查、系列、切片以及器官/感兴趣区域(ROI)层面可视化和分析光谱CT扫描中完整信息的方法,该二维直方图展示的是水的光电衰减与水的散射衰减情况。

材料与方法

利用美国国家标准与技术研究院(NIST)和国际辐射单位与测量委员会(ICRU)提供的理想材料特性预测含有几种标准生物材料的MAD图的外观,以生成此非空间数据空间的图谱。开发了软件工具来生成作为新的DICOM系列的MAD图,便于进行光谱分析。示例选取自一个经机构审查委员会(IRB)批准的回顾性光谱基础图像(SBI)队列,这些图像是使用预发布的双层探测器光谱CT扫描获得的。

结果

通过合并对比研究和非对比研究的所有体素,证实了MAD图的预测外观。展示了几种组织的位置、正常肺组织分布的形状,以及特定器官的MAD图随病理变化方式的差异,突出了肝脏和胰腺中脂肪的存在,彰显了在光谱CT图像上识别病理的潜在用途。

结论

在队列(联合研究)、检查、系列、切片、器官和ROI层面展示的MAD图示例说明了它们在分析和显示光谱CT数据方面的潜在效用。未来的研究旨在开发基于MAD图的器官分割以及基于器官的病理的自动检测和显示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a430/11265196/3683c3d68c45/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验