Suppr超能文献

预测非瓣膜性心房颤动合并射血分数保留的心力衰竭患者出院后1年内发生主要不良心血管和脑血管事件风险的列线图:一项多中心回顾性研究

A Nomogram to Predict the Risk for MACCE within 1 Year after Discharge of Patients with NVAF and HFpEF: A Multicenter Retrospective Study.

作者信息

Wu Yong, Zhang Yahao, Jin Hao, Ding Jiandong

机构信息

Department of Cardiology, Zhongda Hospital, Southeast University, 210009 Nanjing, Jiangsu, China.

Department of Geriatrics, Taizhou People's Hospital, 225300 Taizhou, Jiangsu, China.

出版信息

Rev Cardiovasc Med. 2023 Dec 12;24(12):344. doi: 10.31083/j.rcm2412344. eCollection 2023 Dec.

Abstract

BACKGROUND

To develop and validate a nomogram prediction model for assessing the risk of major adverse cardiovascular and cerebrovascular events (MACCE) in patients with nonvalvular atrial fibrillation (NVAF) and heart failure with preserved ejection fraction (HFpEF) within one year of discharge.

METHODS

We enrolled 828 patients with NVAF and HFpEF from May 2017 to March 2022 in Zhongda Hospital as the training cohort, and 564 patients with NVAF and HFpEF in Taizhou People's Hospital between August 2018 and March 2022 as the validation cohort. A total of 35 clinical features, including baseline characteristics, past medical records, and detection index, were used to create a prediction model for MACCE risk. The optimized model was verified in the validation cohort. Calibration plots, the Hosmer-Lemeshow test, and decision curve analyses (DCA) were utilized to assess the accuracy and clinical efficacy of the nomogram.

RESULTS

MACCE occurred in 23.1% of all patients within one year of discharge. The nomogram identified several independent risk factors for MACCE, including atrial fibrillation duration 6 years, poor medication compliance, serum creatinine level, hyperthyroidism, serum N-terminal pro-brain natriuretic peptide level, and circumferential end-diastolic stress. The DCA demonstrated the excellent efficacy of the prediction model for the MACCE end-point, with a wide range of high-risk threshold probabilities in both cohorts. The Hosmer-Lemeshow test confirmed that momogram predictions fit for both the training ( = 0.573) and validation ( = 0.628) cohorts.

CONCLUSIONS

This nomogram prediction model may offer a quantitative tool for estimating the risk of MACCE in patients with NVAF and HFpEF within one year of discharge.

摘要

背景

建立并验证一种列线图预测模型,用于评估非瓣膜性心房颤动(NVAF)合并射血分数保留的心力衰竭(HFpEF)患者出院后一年内发生主要不良心血管和脑血管事件(MACCE)的风险。

方法

我们纳入了2017年5月至2022年3月在中大医院的828例NVAF和HFpEF患者作为训练队列,以及2018年8月至2022年3月在泰州市人民医院的564例NVAF和HFpEF患者作为验证队列。共使用35项临床特征,包括基线特征、既往病历和检测指标,建立MACCE风险预测模型。在验证队列中对优化后的模型进行验证。利用校准图、Hosmer-Lemeshow检验和决策曲线分析(DCA)评估列线图的准确性和临床疗效。

结果

所有患者出院后一年内MACCE发生率为23.1%。列线图确定了MACCE的几个独立危险因素,包括房颤持续时间≥6年、用药依从性差、血清肌酐水平、甲状腺功能亢进、血清N末端脑钠肽前体水平和舒张末期圆周应力。DCA显示预测模型对MACCE终点具有良好疗效,两个队列中均有广泛的高风险阈值概率。Hosmer-Lemeshow检验证实列线图预测适用于训练队列(P = 0.573)和验证队列(P = 0.628)。

结论

该列线图预测模型可为评估NVAF和HFpEF患者出院后一年内发生MACCE的风险提供一种定量工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb79/11272858/c1908a6f5c07/2153-8174-24-12-344-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验