Suppr超能文献

用于分析基于图像的草莓表型的深度学习表型分析工具的开发。

Development of a deep-learning phenotyping tool for analyzing image-based strawberry phenotypes.

作者信息

Ndikumana Jean Nepo, Lee Unseok, Yoo Ji Hye, Yeboah Samuel, Park Soo Hyun, Lee Taek Sung, Yeoung Young Rog, Kim Hyoung Seok

机构信息

Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Republic of Korea.

Department of Plant Science, Gangneung-Wonju National University, Gangneung, Republic of Korea.

出版信息

Front Plant Sci. 2024 Jul 12;15:1418383. doi: 10.3389/fpls.2024.1418383. eCollection 2024.

Abstract

INTRODUCTION

In strawberry farming, phenotypic traits (such as crown diameter, petiole length, plant height, flower, leaf, and fruit size) measurement is essential as it serves as a decision-making tool for plant monitoring and management. To date, strawberry plant phenotyping has relied on traditional approaches. In this study, an image-based Strawberry Phenotyping Tool (SPT) was developed using two deep-learning (DL) architectures, namely "YOLOv4" and "U-net" integrated into a single system. We aimed to create the most suitable DL-based tool with enhanced robustness to facilitate digital strawberry plant phenotyping directly at the natural scene or indirectly using captured and stored images.

METHODS

Our SPT was developed primarily through two steps (subsequently called versions) using image data with different backgrounds captured with simple smartphone cameras. The two versions (V1 and V2) were developed using the same DL networks but differed by the amount of image data and annotation method used during their development. For V1, 7,116 images were annotated using the single-target non-labeling method, whereas for V2, 7,850 images were annotated using the multitarget labeling method.

RESULTS

The results of the held-out dataset revealed that the developed SPT facilitates strawberry phenotype measurements. By increasing the dataset size combined with multitarget labeling annotation, the detection accuracy of our system changed from 60.24% in V1 to 82.28% in V2. During the validation process, the system was evaluated using 70 images per phenotype and their corresponding actual values. The correlation coefficients and detection frequencies were higher for V2 than for V1, confirming the superiority of V2. Furthermore, an image-based regression model was developed to predict the fresh weight of strawberries based on the fruit size (R = 0.92).

DISCUSSION

The results demonstrate the efficiency of our system in recognizing the aforementioned six strawberry phenotypic traits regardless of the complex scenario of the environment of the strawberry plant. This tool could help farmers and researchers make accurate and efficient decisions related to strawberry plant management, possibly causing increased productivity and yield potential.

摘要

引言

在草莓种植中,表型性状(如冠径、叶柄长度、株高、花、叶和果实大小)的测量至关重要,因为它是植物监测和管理的决策工具。迄今为止,草莓植株表型分析一直依赖传统方法。在本研究中,使用两种深度学习(DL)架构,即集成到单个系统中的“YOLOv4”和“U-net”,开发了一种基于图像的草莓表型分析工具(SPT)。我们旨在创建最合适的基于深度学习的工具,增强其鲁棒性,以便直接在自然场景中或间接使用捕获和存储的图像来促进数字草莓植株表型分析。

方法

我们的SPT主要通过两个步骤(随后称为版本)开发,使用简单智能手机摄像头捕获的具有不同背景的图像数据。这两个版本(V1和V2)使用相同的深度学习网络开发,但在开发过程中使用的图像数据量和注释方法不同。对于V1,使用单目标非标记方法注释了7116张图像,而对于V2,使用多目标标记方法注释了7850张图像。

结果

保留数据集的结果表明,开发的SPT有助于草莓表型测量。通过增加数据集大小并结合多目标标记注释,我们系统的检测准确率从V1中的60.24%变为V2中的82.28%。在验证过程中,使用每个表型70张图像及其相应的实际值对系统进行评估。V2的相关系数和检测频率高于V1,证实了V2的优越性。此外,还开发了一种基于图像的回归模型,以根据果实大小预测草莓的鲜重(R = 0.92)。

讨论

结果表明,我们的系统在识别上述六种草莓表型性状方面具有高效性,无论草莓植株所处环境的复杂情况如何。该工具可以帮助农民和研究人员做出与草莓植株管理相关的准确高效决策,可能会提高生产力和产量潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca83/11284602/b52f5102ab7b/fpls-15-1418383-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验