Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Évry-Courcouronnes, France.
Nanoscale. 2024 Aug 22;16(33):15677-15689. doi: 10.1039/d4nr01581a.
Protein nanopores have proven to be effective for single-molecule studies, particularly for single-stranded DNA (ssDNA) translocation. Previous experiments demonstrated their ability to distinguish differences in purine and pyrimidine bases and in the orientation of the ssDNA molecule inside nanopores. Unfortunately, the microscopic details of ssDNA translocation over experimental time scales, which are not accessible through all-atom molecular dynamics (MD), have yet to be examined. However, coarse-grained (CG) MD simulations enable systems to be simulated over longer characteristic times closer to experiments than all-atom MD. This paper studies ssDNA translocation through α-hemolysin nanopores exploiting steered MD using the MARTINI CG force field. The impacts of the sequence length, orientation inside the nanopore and DNA charges on translocation dynamics as well as the conformational dynamics of ssDNA during the translocation are explored. Our results highlight the efficacy of CG molecular dynamics in capturing the experimental properties of ssDNA translocation, including a wide distribution in translocation times per base. In particular, the phosphate charges of the DNA molecule are crucial in the translocation dynamics and impact the translocation rate. Additionally, the influence of the ssDNA molecule orientation on the translocation rate is explained by the conformational differences of ssDNA inside the nanopore during its translocation. Our study emphasizes the significance of obtaining sufficient statistics CG MD, which can elucidate the great variety of translocation processes.
蛋白质纳米孔已被证明在单分子研究中非常有效,特别是在单链 DNA(ssDNA)转位方面。以前的实验证明了它们区分嘌呤和嘧啶碱基以及 ssDNA 分子在纳米孔内取向差异的能力。不幸的是,ssDNA 在实验时间尺度上的迁移的微观细节,这是全原子分子动力学(MD)无法获得的,尚未被研究。然而,粗粒化(CG)MD 模拟使系统能够在比全原子 MD 更长的特征时间内进行模拟,更接近实验。本文利用 MARTINI CG 力场通过导向 MD 研究了 ssDNA 通过α-溶血素纳米孔的转位。研究了序列长度、纳米孔内取向和 DNA 电荷对转位动力学的影响,以及转位过程中 ssDNA 的构象动力学。我们的结果强调了 CG 分子动力学在捕获 ssDNA 转位实验特性方面的有效性,包括每个碱基的转位时间的广泛分布。特别是,DNA 分子的磷酸基团在转位动力学中起着至关重要的作用,并影响转位速率。此外,ssDNA 分子取向对转位速率的影响可以通过 ssDNA 在转位过程中在纳米孔内的构象差异来解释。我们的研究强调了获得足够统计量 CG MD 的重要性,这可以阐明各种转位过程。