LAMBE, Univ Evry, CNRS, CEA, Université Paris-Saclay, 91025, Evry, France.
Sci Rep. 2019 Oct 31;9(1):15740. doi: 10.1038/s41598-019-51942-y.
The MARTINI coarse-grained (CG) force field is used to test the ability of CG models to simulate ionic transport through protein nanopores. The ionic conductivity of CG ions in solution was computed and compared with experimental results. Next, we studied the electrostatic behavior of a solvated CG lipid bilayer in salt solution under an external electric field. We showed this approach correctly describes the experimental conditions under a potential bias. Finally, we performed CG molecular dynamics simulations of the ionic transport through a protein nanopore (α-hemolysin) inserted in a lipid bilayer, under different electric fields, for 2-3 microseconds. The resulting I - V curve is qualitatively consistent with experiments, although the computed current is one order of magnitude smaller. Current saturation was observed for potential biases over ±350 mV. We also discuss the time to reach a stationary regime and the role of the protein flexibility in our CG simulations.
MARTINI 粗粒化(CG)力场用于测试 CG 模型模拟离子通过蛋白质纳米孔传输的能力。计算了 CG 离子在溶液中的离子电导率,并将其与实验结果进行了比较。接下来,我们研究了在外部电场下盐溶液中溶剂化 CG 脂质双层的静电行为。我们表明,这种方法可以正确描述在电势偏置下的实验条件。最后,我们在不同电场下对离子通过插入脂质双层的蛋白质纳米孔(α-溶血素)的传输进行了 CG 分子动力学模拟,持续 2-3 微秒。所得的 I-V 曲线与实验定性一致,尽管计算出的电流小一个数量级。在 ±350 mV 以上的电势偏置下观察到电流饱和。我们还讨论了达到稳定状态的时间以及蛋白质柔性在我们的 CG 模拟中的作用。