Centre for Molecular Simulation, Department of Biological Sciences, 2500 University Drive, Calgary, AB T2N 2N4, Canada.
Nanoscale. 2014 Aug 7;6(15):9006-16. doi: 10.1039/c3nr06559f.
The application of recent advances in nanopore technology to high-throughput DNA sequencing requires a more detailed understanding of solvent, ion and DNA interactions occurring within these pores. Here we present a combination of atomistic and coarse-grained modeling studies of the dynamics of short single-stranded DNA (ssDNA) homopolymers within the alpha-hemolysin pore, for the two single-stranded homopolymers poly(dA)40 and poly(dC)40. Analysis of atomistic simulations along with the per-residue decomposition of protein-DNA interactions in these simulations gives new insight into the very complex issues that have yet to be fully addressed with detailed MD simulations. We discuss a modification of the solvent properties and ion distribution around DNA within nanopore confinement and put it into the general framework of counterion condensation theory. There is a reasonable agreement in computed properties from our all-atom simulations and the resulting predictions from analytical theories with experimental data, and our equilibrium results here support the conclusions from our previous non-equilibrium Brownian dynamics studies with a recently developed BROMOC protocol that cations are the primary charge carriers through alpha-hemolysin nanopores under an applied voltage in the presence of ssDNA. Clustering analysis led to an identification of distinct conformational states of captured polymer and depth of the current blockade. Therefore, our data suggest that confined polymer may act as a flickering gate, thus contributing to excess noise phenomena. We also discuss the extent of water structuring due to nanopore confinement and the relationship between the conformational dynamics of a captured polymer and the distribution of blocked current.
最近纳米孔技术的进展在高通量 DNA 测序中的应用需要更详细地了解在这些孔中发生的溶剂、离子和 DNA 相互作用。在这里,我们提出了一种原子和粗粒建模研究的组合,用于研究α-溶血素孔内短单链 DNA(ssDNA)同聚物的动力学,针对两种单链同聚物 poly(dA)40 和 poly(dC)40。对原子模拟的分析以及这些模拟中蛋白质-DNA 相互作用的逐残基分解,为尚未通过详细的 MD 模拟完全解决的非常复杂的问题提供了新的见解。我们讨论了在纳米孔约束下对 DNA 周围溶剂性质和离子分布的修改,并将其纳入抗衡离子凝聚理论的一般框架。我们的全原子模拟计算得到的性质与解析理论的结果以及实验数据之间存在合理的一致性,并且我们这里的平衡结果支持了我们之前使用最近开发的 BROMOC 方案进行的非平衡布朗动力学研究的结论,该结论表明在存在 ssDNA 的情况下,阳离子是通过α-溶血素纳米孔的主要电荷载体。聚类分析导致识别捕获聚合物的不同构象状态和电流阻断的深度。因此,我们的数据表明,受限聚合物可以作为闪烁门,从而导致过度噪声现象。我们还讨论了由于纳米孔约束而导致的水结构的程度,以及捕获聚合物的构象动力学与阻塞电流分布之间的关系。