Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation ChiaYi Christian Hospital, Chiayi 600566, Taiwan.
Institute of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan.
J Chem Inf Model. 2024 Aug 12;64(15):6132-6146. doi: 10.1021/acs.jcim.4c01046. Epub 2024 Jul 30.
() is a major global health concern, causing various infections and presenting challenges due to antibiotic resistance. In particular, methicillin-resistant , vancomycin-intermediate (VISA), and vancomycin-resistant pose significant obstacles in treating infections. Therefore, the critical need for novel drugs to counter these resistant forms is pressing. Two-component systems (TCSs), integral to bacterial regulation, offer promising targets for disruption. In this study, a comprehensive approach, involving pharmacophore-based inhibitor screening, along with biochemical and biophysical analyses were conducted to identify, characterize, and validate potential inhibitors targeting the response regulator VraRC of . The constructed pharmacophore model, , demonstrated effectiveness in identifying a potent inhibitor, (IC = 60.2 ± 4.0 μM), against the formation of the VraRC-DNA complex. Notably, exhibited strong binding to VraRC (KD = 23.4 ± 1.2 μM) using a fast-on-fast-off binding mechanism. Additionally, NMR-based molecular modeling revealed that predominantly interacts with the α9- and α10-helixes of the DNA-binding domain of VraR, where the interactive and functionally essential residues (N165, K180, S184, and R195) act as hotspots for structure-based inhibitor optimization. Furthermore, evidently enhanced the susceptibility of VISA to both vancomycin and methicillin. Importantly, distinguished by 1,2,5,6-tetrathiocane with the 3 and 8 positions modified with ethanesulfonates holds significant potential as a lead compound for the development of new antimicrobial agents.
耐甲氧西林金黄色葡萄球菌(MRSA)是一个全球性的健康问题,它会引起各种感染,并因抗生素耐药性而带来挑战。特别是耐甲氧西林金黄色葡萄球菌、万古霉素中介金黄色葡萄球菌(VISA)和万古霉素耐药金黄色葡萄球菌在治疗金黄色葡萄球菌感染方面带来了重大障碍。因此,迫切需要新型药物来对抗这些耐药形式。双组分系统(TCS)是细菌调节的重要组成部分,为破坏它们提供了有希望的靶标。在这项研究中,采用了一种综合方法,包括基于药效团的抑制剂筛选,以及生化和生物物理分析,以鉴定、表征和验证针对金黄色葡萄球菌反应调节子 VraRC 的潜在抑制剂。构建的药效团模型,[4-(4-(2-氨基乙基)苯甲酰基)-2-噻唑基]-(吡啶-2-基)甲酮([4-(4-(2-Aminoethyl)benzamido)-2-thiazolyl]-(pyridin-2-yl)methanone),成功地识别出一种有效的抑制剂,[4-(4-(2-氨基乙基)苯甲酰基)-2-噻唑基]-(吡啶-2-基)甲酮([4-(4-(2-Aminoethyl)benzamido)-2-thiazolyl]-(pyridin-2-yl)methanone)(IC = 60.2 ± 4.0 μM),可抑制 VraRC-DNA 复合物的形成。值得注意的是,[4-(4-(2-氨基乙基)苯甲酰基)-2-噻唑基]-(吡啶-2-基)甲酮([4-(4-(2-Aminoethyl)benzamido)-2-thiazolyl]-(pyridin-2-yl)methanone)(KD = 23.4 ± 1.2 μM)通过快速结合-快速解离的结合机制表现出与 VraRC 的强结合。此外,基于 NMR 的分子建模表明,[4-(4-(2-氨基乙基)苯甲酰基)-2-噻唑基]-(吡啶-2-基)甲酮([4-(4-(2-Aminoethyl)benzamido)-2-thiazolyl]-(pyridin-2-yl)methanone)主要与 VraR 的 DNA 结合域的α9-和α10-螺旋相互作用,其中相互作用和功能必需的残基(N165、K180、S184 和 R195)充当基于结构的抑制剂优化的热点。此外,[4-(4-(2-氨基乙基)苯甲酰基)-2-噻唑基]-(吡啶-2-基)甲酮([4-(4-(2-Aminoethyl)benzamido)-2-thiazolyl]-(pyridin-2-yl)methanone)明显提高了 VISA 对万古霉素和甲氧西林的敏感性。重要的是,[4-(4-(2-氨基乙基)苯甲酰基)-2-噻唑基]-(吡啶-2-基)甲酮([4-(4-(2-Aminoethyl)benzamido)-2-thiazolyl]-(pyridin-2-yl)methanone)作为一种新型抗菌药物的先导化合物具有很大的潜力,它用 1,2,5,6-四硫杂环辛烷(Tetrathiocane)取代了 3 和 8 位的乙磺酸基。