Ripak Alexia, Vega Salgado Ana Karem, Valverde Danillo, Cristofaro Silvia, de Gary Alban, Olivier Yoann, Elias Benjamin, Troian-Gautier Ludovic
Molecular Chemistry, Materials and Catalysis (MOST), UCLouvain, Institut de la Matière Condensée et des Nanosciences (IMCN), Place Louis Pasteur 1/L4.01.02, B-1348 Louvain-la-Neuve, Belgium.
Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
J Am Chem Soc. 2024 Aug 14;146(32):22818-22828. doi: 10.1021/jacs.4c08158. Epub 2024 Jul 30.
The cage escape yield, i.e., the separation of the geminate radical pair formed immediately after bimolecular excited-state electron transfer, was studied in 11 solvents using six Fe(III), Ru(II), and Ir(III) photosensitizers and tri--tolylamine as the electron donor. Among all complexes, the largest cage escape yields (0.67-1) were recorded for the Ir(III) photosensitizer, showing the highest potential as a photocatalyst in photoredox catalysis. These yields dropped to values around 0.65 for both Ru(II) photosensitizers and to values around 0.38 for the Os(II) photosensitizer. Interestingly, for both open-shell Fe(III) complexes, the yields were small (<0.1) in solvents with dielectric constant greater than 20 but were shown to reach values up to 0.58 in solvents with low dielectric constants. The results presented herein on closed-shell photosensitizers suggest that the low rate of triplet-singlet intersystem crossing within the manifold of states of the geminate radical pair implies that charge recombination toward the ground state is a spin-forbidden process, favoring large cage escape yields that are not influenced by dielectric effects. Geminate charge recombination in open-shell metal complexes, such as the two Fe(III) photosensitizers studied herein, is no longer a spin-forbidden process and becomes highly sensitive to solvent effects. Altogether, this study provides general guidelines for factors influencing bimolecular excited-state reactivity using prototypical photosensitizers but also allows one to foresee a great development of Fe(III) photosensitizers with the LMCT excited state in photoredox catalysis, providing that solvents with low dielectric constants are used.
利用六种铁(III)、钌(II)和铱(III)光敏剂以及三 - 甲苯胺作为电子供体,在11种溶剂中研究了笼逃逸产率,即双分子激发态电子转移后立即形成的偕二自由基对的分离情况。在所有配合物中,铱(III)光敏剂的笼逃逸产率最高(0.67 - 1),显示出作为光氧化还原催化中光催化剂的最大潜力。钌(II)光敏剂的这些产率降至约0.65,锇(II)光敏剂的产率降至约0.38。有趣的是,对于两种开壳层铁(III)配合物,在介电常数大于20的溶剂中产率较小(<0.1),但在低介电常数的溶剂中显示产率可达0.58。本文给出的关于闭壳层光敏剂的结果表明,在偕二自由基对的态流形内三重态 - 单重态系间窜越速率较低,这意味着向基态的电荷复合是一个自旋禁阻过程,有利于不受介电效应影响的高笼逃逸产率。开壳层金属配合物(如本文研究的两种铁(III)光敏剂)中的偕二电荷复合不再是自旋禁阻过程,并且对溶剂效应变得高度敏感。总之,本研究为使用典型光敏剂影响双分子激发态反应性的因素提供了一般指导方针,同时也使人们能够预见在光氧化还原催化中具有LMCT激发态的铁(III)光敏剂将有很大发展,前提是使用低介电常数的溶剂。