IEEE Trans Neural Syst Rehabil Eng. 2024;32:2826-2834. doi: 10.1109/TNSRE.2024.3435740. Epub 2024 Aug 8.
Surface electromyogram (EMG) signals find diverse applications in movement rehabilitation and human-computer interfacing. For instance, future advanced prostheses, which use artificial intelligence, will require EMG signals recorded from several sites on the forearm. This requirement will entail complex wiring and data handling. We present the design and evaluation of a bespoke EMG sensing system that addresses the above challenges, enables distributed signal processing, and balances local versus global power consumption. Additionally, the proposed EMG system enables the recording and simultaneous analysis of skin-sensor impedance, needed to ensure signal fidelity. We evaluated the proposed sensing system in three experiments, namely, monitoring muscle fatigue, real-time skin-sensor impedance measurement, and control of a myoelectric computer interface. The proposed system offers comparable signal acquisition characteristics to that achieved by a clinically-approved product. It will serve and integrate future myoelectric technology better via enabling distributed machine learning and improving the signal transmission efficiency.
表面肌电图(EMG)信号在运动康复和人机交互中有着广泛的应用。例如,未来使用人工智能的先进假肢将需要从前臂的多个部位记录 EMG 信号。这一需求将需要复杂的布线和数据处理。我们提出了一种定制的 EMG 传感系统的设计和评估,该系统解决了上述挑战,实现了分布式信号处理,并平衡了局部与全局的功耗。此外,所提出的 EMG 系统能够记录和同时分析皮肤传感器阻抗,这是确保信号保真度所必需的。我们在三个实验中评估了所提出的传感系统,即监测肌肉疲劳、实时皮肤传感器阻抗测量和肌电计算机接口控制。所提出的系统具有与临床认可产品相当的信号采集特性。它将通过支持分布式机器学习和提高信号传输效率,更好地服务和集成未来的肌电技术。