Suppr超能文献

分子桥连诱导的抗盐析效应助力用于准固态锌离子电池的高离子导电硫酸锌基水凝胶

Molecular Bridging Induced Anti-Salting-Out Effect Enabling High Ionic Conductive ZnSO-Based Hydrogel for Quasi-Solid-State Zinc Ion Batteries.

作者信息

Zhou Xuan, Huang Song, Gao Liang, Zhang Zicheng, Wang Qinyang, Hu Zuyang, Lin Xiaoting, Li Yulong, Lin Zequn, Zhang Yufei, Tang Yongchao, Wen Zhipeng, Ye Minghui, Liu Xiaoqing, Li Cheng Chao

机构信息

Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China.

Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.

出版信息

Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202410434. doi: 10.1002/anie.202410434. Epub 2024 Sep 17.

Abstract

Hydrogel electrolytes (HEs) hold great promise in tackling severe issues emerging in aqueous zinc-ion batteries, but the prevalent salting-out effect of kosmotropic salt causes low ionic conductivity and electrochemical instability. Herein, a subtle molecular bridging strategy is proposed to enhance the compatibility between PVA and ZnSO from the perspective of hydrogen-bonding microenvironment re-construction. By introducing urea containing both an H-bond acceptor and donor, the broken H-bonds between PVA and HO, initiated by the SO -driven HO polarization, could be re-united via intense intermolecular hydrogen bonds, thus leading to greatly increased carrying capacity of ZnSO. The urea-modified PVA-ZnSO HEs featuring a high ionic conductivity up to 31.2 mS cm successfully solves the sluggish ionic transport dilemma at the solid-solid interface. Moreover, an organic solid-electrolyte-interphase can be derived from the in situ electro-polymerization of urea to prohibit HO-involved side reactions, thereby prominently improving the reversibility of Zn chemistry. Consequently, Zn anodes witness an impressive lifespan extension from 50 h to 2200 h at 0.1 mA cm while the Zn-I full battery maintains a remarkable Coulombic efficiency (>99.7 %) even after 8000 cycles. The anti-salting-out strategy proposed in this work provides an insightful concept for addressing the phase separation issue of functional HEs.

摘要

水凝胶电解质(HEs)在解决水系锌离子电池中出现的严重问题方面具有巨大潜力,但向列型盐普遍存在的盐析效应会导致离子电导率低和电化学不稳定性。在此,我们提出了一种巧妙的分子桥接策略,从氢键微环境重构的角度增强聚乙烯醇(PVA)与硫酸锌(ZnSO₄)之间的兼容性。通过引入同时含有氢键受体和供体的尿素,由硫酸根(SO₄²⁻)驱动的水分子(H₂O)极化引发的PVA与H₂O之间断裂的氢键,可以通过强烈的分子间氢键重新结合,从而导致硫酸锌的承载能力大大提高。具有高达31.2 mS cm⁻¹高离子电导率的尿素改性PVA-ZnSO₄水凝胶电解质成功解决了固-固界面处离子传输缓慢的难题。此外,尿素的原位电聚合可衍生出一种有机固体电解质界面,以抑制涉及水分子的副反应,从而显著提高锌化学的可逆性。因此,锌阳极在0.1 mA cm⁻²时的寿命从50小时延长至2200小时,而锌-碘全电池即使在8000次循环后仍保持着显著的库仑效率(>99.7%)。这项工作中提出的抗盐析策略为解决功能性水凝胶电解质的相分离问题提供了一个有见地的概念。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验